
Practical session : Linear SVM for two class separable data

Stéphane Canu
scanu@insa-rouen.fr, asi.insa-rouen.fr\~scanu

september the 9th 2014, Ocean’s Big Data Mining, Brest

Practical session description

This practical session aims at writing two functions solving the separable two classes classifica-
tion problem with linear Support Vector Machines (SVM) as a quadratic program in different
situations: primal dual, without and with noise. To make it work, you are supposed to have CVX
installed (you can download it from http://cvxr.com/cvx/) as well as the quadprog matlab
function available in the matlab optimization toolbox.

class 1
class 2
true
SVM
Margin

Figure 1: result of TP 1

Ex. 1 — Linear SVM for two class separable data
1. Generate a set of 100 data points in dimension 2, uniformly distributed in the square

(0,4). To make this data set linearly separable, set the labels to 1 for the points above
the separating line w>x+ b = 0 with w = (4,−1) and b = −6. This will be your training
set.
n = 100; % sample size up to 200000 !
rand(’seed’ ,2); % fix the randomess
Xi = 4*rand(n,2); % build the training set
q = 0; % add useless variables to see what ... up to 180;
Xi = [Xi 4*rand(n,q)];
[n,p] = size(Xi);

bt = -6; % define the separation line bias
wt = [4 ; -1]; % define the separation line vector
yi = sign(wt(1) * Xi(:,1) + wt(2) * Xi(:,2) + bt);

2. Plot the training set, using red circle for class 1 data points and blue circles for the others.
Draw separating line w>x+ b = 0 with w = (4,−1) and b = −6 (in green to get figure 1).
plot(Xi(:,1),Xi(:,2),’or’);
hold on
plot(Xi(find(yi==1) ,1),Xi(find(yi==1) ,2),’ob’);
x1 = 0;
y1 = (-bt -(wt(1)*x1))/wt(2);
x2 = 4;
y2 = (-bt -(wt(1)*x2))/wt(2);
plot([x1 x2],[y1 y2],’g’,’LineWidth ’ ,2)

1

3. Max margin SVM
a) Using CVX, give a matlab code for solving

max
m,v,a

m

with yi(v
>xi + a) ≥ m ; i = 1, n

and ‖v‖2 = 1

cvx_begin
variables v(p) a m
maximize(m)
subject to

yi.*(Xi*v + a) >= m;
v’*v <= 1;

cvx_end

b) How long does it takes? (use tic/toc matlab instructions)
c) Find the indices of the support vectors

vec_sup = find(yi.*(Xi*v + a) <= m+eps ^.3);

d) Draw the separating line found by the max margin SVM and the associated margin
and support vectors
x1 = 0;
y1 = (-a-(v(1)*x1))/v(2);
z1 = (m-a-(v(1)*x1))/v(2);
zm1 = (-m-a-(v(1)*x1))/v(2);
x2 = 4;
y2 = (-a-(v(1)*x2))/v(2);
z2 = (m-a-(v(1)*x2))/v(2);
zm2 = (-m-a-(v(1)*x2))/v(2);
plot([x1 x2],[y1 y2],’r’)
plot([x1 x2],[z1 z2],’:r’)
plot([x1 x2],[zm1 zm2],’:r’)
plot(Xi(vec_sup ,1),Xi(vec_sup ,2),’sm’,’MarkerSize ’ ,10);

4. Linear SVM minimizing the norm (usual form)
a) Using CVX, give a matlab code for solving min

w,b

1
2 ‖w‖

2

with yi(w
>xi + b) ≥ 1 ; i = 1, n

cvx_begin
variables w(p) b
dual variables pi
minimize(.5*w’*w)
subject to

pi : yi.*(Xi*w + b) >= 1;
cvx_end

b) Check that the results given by the max margin and the min norm SVM are the
same i.e.

v =
w

‖w‖
, v = mw and a =

b

‖w‖
, a = mb

[v w/norm(w) w v/m]
[a b/norm(w) b a/m]

2

5. Write the KKT condition associated wight the solution
a) Based on the previous results (w, b), retrieve the active set (the indices of support

vectors)
A = find(yi.*(Xi*w + b) == 1);
A = find(yi.*(Xi*w + b) <= 1.00001);
cA = length(A);

b) Write the KKT system of equation
DA = diag(yi(A));

KKT = [eye(p) -Xi(A,:) ’*DA zeros(p,1)
-DA*Xi(A,:) zeros(cA) -yi(A)
zeros(1,p) -yi(A)’ zeros (1)];

Kb = [zeros(p,1) ; -ones(cA ,1) ;0];

sol = KKT\Kb;

c) Check that the solution provided by matlab and the one given by solving the KKT
are the same
[[w;pi(A);b] sol]

6. SVM and quadratic programming
a) Rewrite the min norm SVM problem as a quadratic program in its stand at form

and use quadprog or cplexqp to solve it
% X = QUADPROG(H,f,A,b) to solve the quadratic programming problem:
%
% min 0.5*x’*H*x + f’*x subject to: A*x <= b
% x

H = [eye(p)];
H(p+1,p+1) = 0;
f = zeros(p+1,1);
A = -[diag(yi)*Xi yi];
bb = -ones(n,1);

x = quadprog(H,f,A,bb);

b) Check that the results provided by CVX and quadprog are the same
[x [w;b]]

c) How long does it takes. Is it slower or faster than CVX (and why)?
7. Max Margin SVM in the dual

a) Using CVX, give a matlab code for solving Max Margin SVM in the dual
min
α

1
2 α

>Gα−
∑
i αi

with α>yi = 0 ;
and 0 ≤ αi ; i = 1, n

G = (yi*yi ’).*(Xi*Xi ’);
e = ones(n,1);
cvx_begin

variable a(n)
dual variables de dp
minimize(1/2*a’*G*a - e’*a)
subject to

de : yi ’*a == 0;
dp : a >= 0;

cvx_end

3

b) Check that the dual variable of the primal are the same as the variables of the dual
[a pi]

c) Check that the dual variable of the primal are the same as the variables of the dual
[b de]

d) Using the representer theorem (KKT for stationarity with respect to w), recompute
w using the dual variables
[w Xi ’*(yi.*a)]

8. Using quadprog to solve both primal and dual SVM formulations
a) Modify the outputs of the quadprog you wrote for solving the min norm SVM prob-

lem to get the dual variables (the Lagrange multipliers)
% [X,FVAL ,EXITFLAG ,OUTPUT ,LAMBDA] = QUADPROG(H,f,A,b) returns the set
% Lagrangian multipliers LAMBDA , at the solution: LAMBDA.ineqlin
% linear inequalities A, LAMBDA.eqlin for the linear equalities Aeq
% LAMBDA.lower for LB, and LAMBDA.upper for UB.H = [eye(p)];

H(p+1,p+1) = 0;
f = zeros(p+1,1);
A = -[diag(yi)*Xi yi];
bb = -ones(n,1);
[xp , VAL ,EXITFLAG ,OUTPUT ,lambda] = quadprog(H,f,A,bb);

b) Rewrite the min norm SVM dual problem as a quadratic program in its stand at
form and use quadprog or cplexqp to solve it
l = eps ^.5;
G = G + l*eye(n); % 7) the secret to make it work
tic
ad = quadprog(G,-e,[],[],yi ’,0,zeros(n,1),inf*ones(n,1));

c) Download and instal the SVMKM toolbox from
http://asi.insa-rouen.fr/enseignants/~arakoto/toolbox/.
Solve the same min norm SVM dual problem using the monqp solver included in the
SVMKM toolbox.
% function [xnew , lambda , pos] = monqp(H,c,A,b,C,l,verbose ,X,ps,xinit)
%
% min 1/2 x’ H x - c’ x
% x
% contrainte A’ x = b
%
% et 0 <= x_i <= C_i
[alpha , b, pos] = monqp(G,e,yi ,0,inf ,l,0);

d) Using the output of monqp, recompute the whole dual variables and the associated
primal variables.
aqp = zeros(n,1);
aqp(pos) = alpha;
wqp = Xi(pos ,:) ’*(yi(pos).*alpha);

9. Compare all the results and computing time.
10. Write two matlab functions SVMClass, SVMVal for solving the separable two classes classi-

fication problem with linear Support Vector Machines (SVM) in the primal as a quadratic
program.
[w,b] = SVMClass(Xi ,yi ,opt);
% opt for some options
% you may also ofer the possibility for the user too choose the solver

[y_pred] = SVMVal(Xtest ,w,b);

4

