SVM and Kernel machine linear and non-linear classification

Stéphane Canu stephane.canu@litislab.eu

Ocean's Big Data Mining, 2014
September 9, 2014

Road map

(1) Supervised classification and prediction

(2) Linear SVM

- Separating hyperplanes
- Linear SVM: the problem
- Optimization in 5 slides
- Dual formulation of the linear SVM
- The non separable case
(3) Kernels

(4) Kernelized support vector machine

Supervised classification as Learning from examples

The task, use longitude and latitude to predict: is it a boat or a house?

Supervised classification as Learning from examples

Using (red and green) labelled examples learn a (yellow) decision rule

Supervised classification as Learning from examples

Using (red and green) labelled examples...

Supervised classification as Learning from examples

Using (red and green) labelled examples... learn a (yellow) decision rule

Supervised classification as Learning from examples

Use the decision border to predict unseen objects label

Suppervised classification: the 2 steps

(1) the border $\leftarrow \operatorname{Learn}(x i, y i, n$ training data) $\% \mathcal{A}$ is SVM_learn
(2) $\quad y_{p} \leftarrow \operatorname{Predict(unseen~} x$, the border) $\% f$ is SVM_val

Unavaliable speakers (more qualified in Environmental Data Learning ;)

Mikhail Kanevski UNIL geostat

Unavaliable speakers (more qualified in Environmental Data Learning ;)

Mikhail Kanevski
UNIL geostat
S. Thiria \& F. Badran UPMC Locean

less "ocean", but...

more maths, more optimization, more matlab...

Road map

(1) Supervised classification and prediction
(2) Linear SVM

- Separating hyperplanes
- Linear SVM: the problem
- Optimization in 5 slides
- Dual formulation of the linear SVM
- The non separable case
(3) Kernels
(4) Kernelized support vector machine

"The algorithms for constructing the separating hyperplane considered above will be utilized for developing a battery of programs for pattern recognition. " in Learning with kernels, 2002 - from V .Vapnik, 1982

Separating hyperplanes

Find a line to separate (classify) blue from red

$$
D(x)=\operatorname{sign}\left(\mathbf{v}^{\top} \mathbf{x}+a\right)
$$

Separating hyperplanes

Find a line to separate (classify) blue from red

$$
D(x)=\operatorname{sign}\left(\mathbf{v}^{\top} \mathbf{x}+a\right)
$$

the decision border:

$$
\mathbf{v}^{\top} \mathbf{x}+a=0
$$

Separating hyperplanes

Find a line to separate (classify) blue from red

$$
D(x)=\operatorname{sign}\left(\mathbf{v}^{\top} \mathbf{x}+a\right)
$$

the decision border:

$$
\mathbf{v}^{\top} \mathbf{x}+a=0
$$

there are many solutions...
The problem is ill posed
How to choose a solution?

Maximize our confidence $=$ maximize the margin the decision border: $\Delta(\mathbf{v}, \mathrm{a})=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid \mathbf{v}^{\top} \mathbf{x}+\mathrm{a}=0\right\}$ maximize the margin

Maximize the confidence

$$
\begin{cases}\max _{\mathbf{v}, a} & m \\ \text { with } & \min _{i=1, n} \frac{\left|\mathbf{v}^{\top} \mathbf{x}_{i}+a\right|}{\|\mathbf{v}\|} \geq m\end{cases}
$$

the problem is still ill posed if (\mathbf{v}, a) is a solution, $\forall 0<k(k v, k a)$ is also a solution...

From the geometrical to the numerical margin

Maximize the (geometrical) margin

if the min is greater, everybody is greater $\left(y_{i} \in\{-1,1\}\right)$

$$
\begin{cases}\max _{\mathbf{v}, a} & m \\ \text { with } & \frac{y_{i}\left(\mathbf{v}^{\top} \mathbf{x}_{i}+a\right)}{\|\mathbf{v}\|} \geq m, \quad i=1, n\end{cases}
$$

From the geometrical to the numerical margin

Maximize the (geometrical) margin

if the min is greater, everybody is greater $\left(y_{i} \in\{-1,1\}\right)$

$$
\begin{cases}\max _{\mathbf{v}, a} & m \\ \text { with } & \frac{y_{i}\left(\mathbf{v}^{\top} \mathbf{x}_{i}+a\right)}{\|\mathbf{v}\|} \geq m, \quad i=1, n\end{cases}
$$

change variable: $\mathbf{w}=\frac{\mathbf{v}}{m\|\mathbf{v}\|}$ and $b=\frac{a}{m\|\mathbf{v}\|} \Longrightarrow\|\mathbf{w}\|=\frac{1}{m}$
$\left\{\begin{array}{ll}\max & m \\ \mathbf{w}, b \\ \text { with } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \quad ; i=1, n \\ \text { and } & m=\frac{1}{\|\mathbf{w}\|}\end{array} \quad \begin{cases}\min _{\mathbf{w}, b} & \|\mathbf{w}\|^{2} \\ \text { with } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \\ & i=1, n\end{cases}\right.$

Road map

(1) Supervised classification and prediction
(2) Linear SVM

- Separating hyperplanes
- Linear SVM: the problem
- Optimization in 5 slides
- Dual formulation of the linear SVM
- The non separable case
(3) Kernels
(4) Kernelized support vector machine

"The algorithms for constructing the separating hyperplane considered above will be utilized for developing a battery of programs for pattern recognition. " in Learning with kernels, 2002 - from V .Vapnik, 1982

Linear SVM: the problem

The maximal margin (=minimal norm) canonical hyperplane

Linear SVMs are the solution of the following problem (called primal)
Let $\left\{\left(\mathrm{x}_{i}, y_{i}\right) ; i=1: n\right\}$ be a set of labelled data with $\mathrm{x} \in \mathbb{R}^{d}, y_{i} \in\{1,-1\}$ A support vector machine (SVM) is a linear classifier associated with the following decision function: $D(x)=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)$ where $\mathbf{w} \in \mathbb{R}^{d}$ and $b \in \mathbb{R}$ a given thought the solution of the following problem:

$$
\begin{cases}\min _{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}} & \frac{1}{2}\|\mathbf{w}\|^{2} \\ \text { with } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1, \quad i=1, n\end{cases}
$$

This is a quadratic program (QP): $\left\{\begin{array}{cl}\min _{\mathbf{z}} & \frac{1}{2} \mathbf{z}^{\top} A \mathbf{z}-\mathbf{d}^{\top} \mathbf{z} \\ \text { with } & B \mathbf{z} \leq \mathbf{e}\end{array}\right.$

Support vector machines as a QP

The Standart QP formulation
$\left\{\begin{array}{ll}\min _{\mathbf{w}, b} & \frac{1}{2}\|\mathbf{w}\|^{2} \\ \text { with } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1, i=1, n\end{array} \Leftrightarrow \begin{cases}\min _{\mathbf{z} \in \mathbb{R}^{d+1}} & \frac{1}{2} \mathbf{z}^{\top} A \mathbf{z}-\mathbf{d}^{\top} \mathbf{z} \\ \text { with } & B \mathbf{z} \leq \mathbf{e}\end{cases}\right.$
$\mathbf{z}=(\mathbf{w}, b)^{\top}, \mathbf{d}=(0, \ldots, 0)^{\top}, A=\left[\begin{array}{ll}l & 0 \\ 0 & 0\end{array}\right], B=-[\operatorname{diag}(\mathbf{y}) X, \mathbf{y}]$ and $\mathbf{e}=-(1, \ldots, 1)^{\top}$

Solve it using a standard QP solver such as (for instance)

```
% QUADPROG Quadratic programming.
    X = QUADPROG(H,f,A,b) attempts to solve the quadratic programming problem:
    min 0.5*x'*H*x + f'*x subject to: A*x <= b
so that the solution is in the range LB <= X <= UB
```

For more solvers (just to name a few) have a look at:

- plato.asu.edu/sub/nlores.html\#QP-problem
- www.numerical.rl.ac.uk/people/nimg/qp/qp.html

Road map

(1) Supervised classification and prediction
(2) Linear SVM

- Separating hyperplanes
- Linear SVM: the problem
- Optimization in 5 slides
- Dual formulation of the linear SVM
- The non separable case
(3) Kernels

4 Kernelized support vector machine

Stephen Boyd and

 Lieven vandenbergheConvex Optimization

First order optimality condition (1)

$$
\text { problem } \mathcal{P}= \begin{cases}\min _{x \in \mathbf{R}^{n}} & J(\mathbf{x}) \\ \text { with } & h_{j}(x)=0 \quad j=1, \ldots, p \\ \text { and } & g_{i}(x) \leq 0 i=1, \ldots, q\end{cases}
$$

Definition: Karush, Kuhn and Tucker (KKT) conditions

$$
\text { stationarity } \nabla J\left(x^{\star}\right)+\sum_{j=1}^{p} \lambda_{j} \nabla h_{j}\left(x^{\star}\right)+\sum_{i=1}^{q} \mu_{i} \nabla g_{i}\left(x^{\star}\right)=0
$$

primal admissibility $h_{j}\left(x^{\star}\right)=0$

$$
g_{i}\left(x^{\star}\right) \leq 0
$$

$$
\begin{aligned}
j & =1, \ldots, p \\
i & =1, \ldots, q \\
i & =1, \ldots, q \\
i & =1, \ldots, q
\end{aligned}
$$

dual admissibility $\mu_{i} \geq 0$ complementarity $\mu_{i} g_{i}\left(x^{\star}\right)=0$
λ_{j} and μ_{i} are called the Lagrange multipliers of problem \mathcal{P}

First order optimality condition (2)

Theorem (12.1 Nocedal \& Wright pp 321)
If a vector x^{\star} is a stationary point of problem \mathcal{P}
Then there exists ${ }^{a}$ Lagrange multipliers such that $\left(x^{\star},\left\{\lambda_{j}\right\}_{j=1: p},\left\{\mu_{i}\right\}_{i=1: q}\right)$ fulfill KKT conditions
${ }^{a}$ under some conditions e.g. linear independence constraint qualification

If the problem is convex, then a stationary point is the solution of the problem

A quadratic program (QP) is convex when.

$$
(Q P) \begin{cases}\min _{\mathbf{z}} & \frac{1}{2} \mathbf{z}^{\top} A \mathbf{z}-\mathbf{d}^{\top} \mathbf{z} \\ \text { with } & B \mathbf{z} \leq \mathbf{e}\end{cases}
$$

\ldots.. when matrix A is positive definite

KKT condition - Lagrangian (3)

$$
\text { problem } \mathcal{P}= \begin{cases}\min _{x \in \mathbf{R}^{n}} & J(\mathbf{x}) \\ \text { with } & h_{j}(x)=0 \quad j=1, \ldots, p \\ \text { and } & g_{i}(x) \leq 0 i=1, \ldots, q\end{cases}
$$

Definition: Lagrangian

The lagrangian of problem \mathcal{P} is the following function:

$$
\mathcal{L}(\mathbf{x}, \lambda, \mu)=J(x)+\sum_{j=1}^{p} \lambda_{j} h_{j}(x)+\sum_{i=1}^{q} \mu_{i} g_{i}(x)
$$

The importance of being a lagrangian

- the stationarity condition can be written: $\nabla \mathcal{L}\left(\mathbf{x}^{\star}, \lambda, \mu\right)=0$
- the lagrangian saddle point $\max _{\lambda, \mu} \min _{\mathrm{x}} \mathcal{L}(\mathbf{x}, \lambda, \mu)$

Primal variables: x and dual variables λ, μ (the Lagrange multipliers)

Duality - definitions (1)

Primal and (Lagrange) dual problems

$$
\mathcal{P}=\left\{\begin{array}{lll}
\min _{x \in \mathbf{R}^{\boldsymbol{n}}} J(\mathbf{x}) & \\
\text { with } & h_{j}(x)=0 & j=1, p \\
\text { and } & g_{i}(x) \leq 0 & i=1, q
\end{array} \quad \mathcal{D}= \begin{cases}\max _{\lambda \in \mathbf{R}^{\boldsymbol{P}}, \mu \in \mathbf{R}^{\boldsymbol{q}}} & Q(\lambda, \mu) \\
\text { with } & \mu_{j} \geq 0 \quad j=1, q\end{cases}\right.
$$

Dual objective function:

$$
\begin{aligned}
Q(\lambda, \mu) & =\inf _{x} \mathcal{L}(\mathbf{x}, \lambda, \mu) \\
& =\inf _{x} J(x)+\sum_{j=1}^{p} \lambda_{j} h_{j}(x)+\sum_{i=1}^{q} \mu_{i} g_{i}(x)
\end{aligned}
$$

Wolf dual problem

$$
\mathcal{W}= \begin{cases}\max _{\mathbf{x}, \lambda \in \mathbf{R}^{\boldsymbol{p}}, \mu \in \mathbf{R}^{\boldsymbol{q}}} & \mathcal{L}(\mathbf{x}, \lambda, \mu) \\ \text { with } & \mu_{j} \geq 0 \quad j=1, q \\ \text { and } & \nabla J\left(x^{\star}\right)+\sum_{j=1}^{p} \lambda_{j} \nabla h_{j}\left(x^{\star}\right)+\sum_{i=1}^{q} \mu_{i} \nabla g_{i}\left(x^{\star}\right)=0\end{cases}
$$

Duality - theorems (2)

Theorem (12.12, 12.13 and 12.14 Nocedal \& Wright pp 346)

If f, g and h are convex and continuously differentiable ${ }^{a}$, then the solution of the dual problem is the same as the solution of the primal
${ }^{a}$ under some conditions e.g. linear independence constraint qualification

$$
\begin{aligned}
\left(\lambda^{\star}, \mu^{\star}\right) & =\text { solution of problem } \mathcal{D} \\
\mathbf{x}^{\star} & =\underset{\mathbf{x}}{\arg \min } \mathcal{L}\left(\mathbf{x}, \lambda^{\star}, \mu^{\star}\right)
\end{aligned}
$$

$$
\begin{aligned}
Q\left(\lambda^{\star}, \mu^{\star}\right)=\underset{\mathbf{x}}{\arg \min } \mathcal{L}\left(\mathbf{x}, \lambda^{\star}, \mu^{\star}\right) & =\mathcal{L}\left(\mathbf{x}^{\star}, \lambda^{\star}, \mu^{\star}\right) \\
& =J\left(\mathbf{x}^{\star}\right)+\lambda^{\star} H\left(\mathbf{x}^{\star}\right)+\mu^{\star} G\left(\mathbf{x}^{\star}\right)=J\left(\mathbf{x}^{\star}\right)
\end{aligned}
$$

and for any feasible point \mathbf{x}

$$
Q(\lambda, \mu) \leq J(\mathbf{x}) \quad \rightarrow \quad 0 \leq J(\mathrm{x})-Q(\lambda, \mu)
$$

The duality gap is the difference between the primal and dual cost functions

Road map

(1) Supervised classification and prediction
(2) Linear SVM

- Separating hyperplanes
- Linear SVM: the problem
- Optimization in 5 slides
- Dual formulation of the linear SVM
- The non separable case
(3) Kernels
(4) Kernelized support vector machine

Figure from L. Bottou \& C.J. Lin, Support vector machine solvers, in Large scale kernel machines, 2007.

Linear SVM dual formulation - The lagrangian

$$
\begin{cases}\min _{\mathbf{w}, b} & \frac{1}{2}\|\mathbf{w}\|^{2} \\ \text { with } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \quad i=1, n\end{cases}
$$

Looking for the lagrangian saddle point $\max _{\alpha} \min _{\mathbf{w}, b} \mathcal{L}(\mathbf{w}, b, \alpha)$ with so called lagrange multipliers $\alpha_{i} \geq 0$

$$
\mathcal{L}(\mathbf{w}, b, \alpha)=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1\right)
$$

α_{i} represents the influence of constraint thus the influence of the training example (x_{i}, y_{i})

Stationarity conditions

$$
\mathcal{L}(\mathbf{w}, b, \alpha)=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1\right)
$$

Computing the gradients: $\begin{cases}\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, b, \alpha) & =\mathbf{w}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \\ \frac{\partial \mathcal{L}(\mathbf{w}, b, \alpha)}{\partial b} & =\sum_{i=1}^{n} \alpha_{i} y_{i}\end{cases}$
we have the following optimality conditions

$$
\left\{\begin{array}{l}
\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, b, \alpha)=0 \Rightarrow \mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \\
\frac{\partial \mathcal{L}(\mathbf{w}, b, \alpha)}{\partial b}=0 \Rightarrow \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}\right.
$$

KKT conditions for SVM

$$
\text { stationarity } \mathbf{w}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}=0 \quad \text { and } \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

primal admissibility $y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1$ dual admissibility $\alpha_{i} \geq 0$
$i=1, \ldots, n$
$i=1, \ldots, n$
complementarity $\alpha_{i}\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1\right)=0 \quad i=1, \ldots, n$

The complementary condition split the data into two sets

- \mathcal{A} be the set of active constraints:
usefull points

$$
\mathcal{A}=\left\{i \in[1, n] \mid y_{i}\left(\mathbf{w}^{* \top} \mathbf{x}_{i}+b^{*}\right)=1\right\}
$$

- its complementary $\overline{\mathcal{A}}$
useless points

$$
\text { if } i \notin \mathcal{A}, \alpha_{i}=0
$$

The KKT conditions for SVM

The same KKT but using matrix notations and the active set \mathcal{A}

$$
\begin{array}{ll}
\text { stationarity } & \mathbf{w}-X^{\top} D_{y} \alpha=0 \\
& \alpha^{\top} y=0
\end{array}
$$

primal admissibility $D_{y}(X w+b \mathbb{I}) \geq \mathbb{I}$

$$
\begin{array}{cl}
\text { dual admissibility } & \alpha \geq 0 \\
\text { complementarity } & D_{y}\left(X_{\mathcal{A}} \mathbf{w}+b \mathbb{1}_{\mathcal{A}}\right)=\mathbb{I}_{\mathcal{A}} \\
& \alpha_{\overline{\mathcal{A}}}=0
\end{array}
$$

Knowing \mathcal{A}, the solution verifies the following linear system:

$$
\left\{\begin{array}{ccl}
\mathbf{w} & -X_{\mathcal{A}}^{\top} D_{y} \alpha_{\mathcal{A}} & \\
-D_{y} X_{\mathcal{A}} \mathbf{w} & -b \mathbf{y}_{\mathcal{A}} & =-\mathbf{e}_{\mathcal{A}} \\
& -\mathbf{y}_{\mathcal{A}}^{\top} \alpha_{\mathcal{A}} & \\
\hline
\end{array}\right.
$$

with $D_{y}=\operatorname{diag}\left(\mathbf{y}_{\mathcal{A}}\right), \alpha_{\mathcal{A}}=\alpha(\mathcal{A}), \mathbf{y}_{\mathcal{A}}=\mathbf{y}(\mathcal{A})$ et $X_{\mathcal{A}}=X\left(X_{\mathcal{A}} ;:\right)$.

The KKT conditions as a linear system

$$
\left\{\begin{array}{ccl}
\mathbf{w} & -X_{\mathcal{A}}^{\top} D_{y} \alpha_{\mathcal{A}} & \\
-D_{y} X_{\mathcal{A}} \mathbf{w} & -b \mathbf{y}_{\mathcal{A}} & =-\mathbf{e}_{\mathcal{A}} \\
& -\mathbf{y}_{\mathcal{A}}^{\top} \alpha_{\mathcal{A}} & \\
& =0
\end{array}\right.
$$

with $D_{y}=\operatorname{diag}\left(\mathbf{y}_{\mathcal{A}}\right), \alpha_{\mathcal{A}}=\alpha(\mathcal{A}), \mathbf{y}_{\mathcal{A}}=\mathbf{y}(\mathcal{A})$ et $X_{\mathcal{A}}=X\left(X_{\mathcal{A}} ;:\right)$.

I	$-X_{\mathcal{A}}^{\top} D_{y}$	0
$-D_{y} X_{\mathcal{A}}$	0	$-\mathbf{y}_{\mathcal{A}}$
0	$-\mathbf{y}_{\mathcal{A}}^{\top}$	0

we can work on it to separate \mathbf{w} from $\left(\alpha_{\mathcal{A}}, b\right)$

The SVM dual formulation

The SVM Wolfe dual

$$
\left\{\begin{array}{ll}
\max _{\mathbf{w}, b, \alpha} & \frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1\right) \\
\text { with } & \alpha_{i} \geq 0 \\
\text { and } & \mathbf{w}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}=0 \text { and } \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array} \quad i=1, \ldots, n\right.
$$

using the fact: $\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$
The SVM Wolfe dual without \mathbf{w} and b

$$
\left\{\begin{array}{ll}
\max _{\alpha} & -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{j} \alpha_{i} y_{i} y_{j} \mathbf{x}_{j}^{\top} \mathbf{x}_{i}+\sum_{i=1}^{n} \alpha_{i} \\
\text { with } & \alpha_{i} \geq 0 \\
\text { and } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array} \quad i=1, \ldots, n\right.
$$

Linear SVM dual formulation

$$
\mathcal{L}(\mathbf{w}, b, \alpha)=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1\right)
$$

Optimality: $\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0$

$$
\begin{aligned}
\mathcal{L}(\alpha) & =\frac{1}{2} \underbrace{\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{j} \alpha_{i} y_{i} y_{j} \mathbf{x}_{j}^{\top} \mathbf{x}_{i}}_{\mathbf{w}^{\top} \mathbf{w}}-\sum_{i=1}^{n} \alpha_{i} y_{i} \underbrace{\sum_{j=1}^{n} \alpha_{j} y_{j} \mathbf{x}_{j}^{\top}}_{\mathbf{w}^{\top}} \mathbf{x}_{i}-\underbrace{b \underbrace{n}_{i=1} \alpha_{i} y_{i}}_{=0}+\sum_{i=1}^{n} \alpha_{i} \\
& =-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n^{\top}} \alpha_{j} \alpha_{i} y_{i} y_{j} \mathbf{x}_{j}^{\top} \mathbf{x}_{i}+\sum_{i=1}^{n} \alpha_{i}
\end{aligned}
$$

Dual linear SVM is also a quadratic program

$$
\text { problem } \mathcal{D}\left\{\begin{array}{ll}
\min _{\alpha \in \mathbf{R}^{n}} & \frac{1}{2} \alpha^{\top} G \alpha-\mathbf{e}^{\top} \alpha \\
\text { with } & \mathbf{y}^{\top} \alpha=0 \\
\text { and } & 0 \leq \alpha_{i}
\end{array} \quad i=1, n\right.
$$

with G a symmetric matrix $n \times n$ such that $G_{i j}=y_{i} y_{j} \mathbf{x}_{j}^{\top} \mathbf{x}_{i}$

SVM primal vs. dual

Primal

$$
\begin{cases}\min _{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}} & \frac{1}{2}\|\mathbf{w}\|^{2} \\ \text { with } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \\ & i=1, n\end{cases}
$$

- $d+1$ unknown
- n constraints
- classical QP
- perfect when $d \ll n$

Dual

$\begin{cases}\min _{\alpha \in \mathbb{R}^{n}} & \frac{1}{2} \alpha^{\top} G \alpha-\mathbf{e}^{\top} \alpha \\ \text { with } & \mathbf{y}^{\top} \alpha=0 \\ \text { and } & 0 \leq \alpha_{i} \quad i=1, n\end{cases}$

- n unknown
- G Gram matrix (pairwise influence matrix)
- n box constraints
- easy to solve
- to be used when $d>n$

SVM primal vs. dual

Primal

Dual

$$
\left\{\begin{array} { l l }
{ \operatorname { m i n } _ { \mathbf { w } \in \mathbb { R } ^ { d } , b \in \mathbb { R } } } & { \frac { 1 } { 2 } \| \mathbf { w } \| ^ { 2 } } \\
{ \text { with } } & { y _ { i } (\mathbf { w } ^ { \top } \mathbf { x } _ { i } + b) \geq 1 } \\
{ i = 1 , n }
\end{array} \quad \left\{\begin{array}{lll}
\min _{\alpha \in \mathbb{R}^{n}} & \frac{1}{2} \alpha^{\top} G \alpha-\mathbf{e}^{\top} \alpha \\
\text { with } & \mathbf{y}^{\top} \alpha=0 \\
\text { and } & 0 \leq \alpha_{i}
\end{array} \quad i=1, n\right.\right.
$$

- n unknown
- $d+1$ unknown
- n constraints
- classical QP
- perfect when $d \ll n$
- G Gram matrix (pairwise influence matrix)
- n box constraints
- easy to solve
- to be used when $d>n$

$$
f(\mathbf{x})=\sum_{j=1}^{d} w_{j} x_{j}+b=\sum_{i=1}^{n} \alpha_{i} y_{i}\left(\mathbf{x}^{\top} \mathbf{x}_{i}\right)+b
$$

Road map

(1) Supervised classification and prediction
(2) Linear SVM

- Separating hyperplanes
- Linear SVM: the problem
- Optimization in 5 slides
- Dual formulation of the linear SVM
- The non separable case
(3) Kernels
(4) Kernelized support vector machine

The non separable case: a bi criteria optimization problem
Modeling potential errors: introducing slack variables ξ_{i}

$$
\left(x_{i}, y_{i}\right) \quad \begin{cases}\text { no error: } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \Rightarrow \begin{array}{l}
\xi_{i}=0 \\
\text { error: }
\end{array} \\
\xi_{i}=1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)>0\end{cases}
$$

$$
\begin{cases}\min _{\mathbf{w}, b, \xi} & \frac{1}{2}\|\mathbf{w}\|^{2} \\ \min _{\mathbf{w}, b, \xi} & \frac{C}{p} \sum_{i=1}^{n} \xi_{i}^{p} \\ \text { with } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \\ & \xi_{i} \geq 0 \quad i=1, n\end{cases}
$$

Our hope: almost all $\xi_{i}=0$

The non separable case

Modeling potential errors: introducing slack variables ξ_{i}

$$
\left(x_{i}, y_{i}\right) \quad\left\{\begin{array}{lll}
\text { no error: } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \Rightarrow & \xi_{i}=0 \\
\text { error: } & \xi_{i}=1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)>0
\end{array}\right.
$$

Minimizing also the slack (the error), for a given $C>0$

$$
\left\{\begin{array}{lll}
\min _{\mathbf{w}, b, \xi} & \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{p} \sum_{i=1}^{n} \xi_{i}^{p} & \\
\text { with } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} & i=1, n \\
& \xi_{i} \geq 0 & i=1, n
\end{array}\right.
$$

Looking for the saddle point of the lagrangian with the Lagrange multipliers $\alpha_{i} \geq 0$ and $\beta_{i} \geq 0$

$$
\mathcal{L}(\mathbf{w}, b, \alpha, \beta)=\frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{p} \sum_{i=1}^{n} \xi_{i}^{p}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1+\xi_{i}\right)-\sum_{i=1}^{n} \beta_{i} \xi_{i}
$$

The KKT

$$
\begin{array}{cc}
\mathcal{L}(\mathbf{w}, b, \alpha, \beta)=\frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{p} \sum_{i=1}^{n} \xi_{i}^{p}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1+\xi_{i}\right)-\sum_{i=1}^{n} \beta_{i} \xi_{i} \\
\text { stationarity } \mathbf{w}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}=0 & \text { and } \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
C-\alpha_{i}-\beta_{i}=0 & i=1, \ldots, n \\
\text { primal admissibility } \begin{array}{ll}
y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 & i=1, \ldots, n \\
\xi_{i} \geq 0 & i=1, \ldots, n \\
\text { dual admissibility } \alpha_{i} \geq 0 & i=1, \ldots, n \\
\beta_{i} \geq 0 & i=1, \ldots, n \\
\text { complementarity } \alpha_{i}\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1+\xi_{i}\right)=0 & i=1, \ldots, n \\
\beta_{i} \xi_{i}=0 &
\end{array} \\
\begin{array}{ll}
& i=1, \ldots, n
\end{array}
\end{array}
$$

Let's eliminate β !

$$
\text { stationarity } \mathbf{w}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}=0 \quad \text { and } \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

primal admissibility $y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1$

$$
\xi_{i} \geq 0
$$

dual admissibility $\alpha_{i} \geq 0$

$$
C-\alpha_{i} \geq 0
$$

$$
i=1, \ldots, n
$$

complementarity $\alpha_{i}\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1+\xi_{i}\right)=0 \quad i=1, \ldots, n$

$$
\left(C-\alpha_{i}\right) \xi_{i}=0 \quad i=1, \ldots, n
$$

sets	I_{0}	$I_{\mathcal{A}}$	I_{C}
α_{i}	0	$0<\alpha<C$	C
β_{i}	C	$C-\alpha$	0
ξ_{i}	0	0	$1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)$
	$y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)>1$	$y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)=1$	$y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)<1$
	useless	usefull (support vec $)$	suspicious

The importance of being support

data point	α	constraint value	set
\mathbf{x}_{i} useless	$\alpha_{i}=0$	$y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)>1$	I_{0}
\mathbf{x}_{i} support	$0<\alpha_{i}<C$	$y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)=1$	I_{α}
\mathbf{x}_{i} suspicious	$\alpha_{i}=C$	$y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)<1$	I_{C}

Table: When a data point is «support» it lies exactly on the margin.
here lies the efficiency of the algorithm (and its complexity)! sparsity: $\alpha_{i}=0$

Optimality conditions $(p=1)$
$\mathcal{L}(\mathbf{w}, b, \alpha, \beta)=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1+\xi_{i}\right)-\sum_{i=1}^{n} \beta_{i} \xi_{i}$
Computing the gradients: $\begin{cases}\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, b, \alpha) & =\mathbf{w}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \\ \frac{\partial \mathcal{L}(\mathbf{w}, b, \alpha)}{\partial b} & =\sum_{i=1}^{n} \alpha_{i} y_{i} \\ \nabla_{\xi_{i}} \mathcal{L}(\mathbf{w}, b, \alpha) & =C-\alpha_{i}-\beta_{i}\end{cases}$

- no change for \mathbf{w} and b
- $\beta_{i} \geq 0$ and $C-\alpha_{i}-\beta_{i}=0 \quad \Rightarrow \quad \alpha_{i} \leq C$

The dual formulation:

$$
\begin{cases}\min _{\alpha \in \mathbf{R}^{n}} & \frac{1}{2} \alpha^{\top} G \alpha-\mathbf{e}^{\top} \alpha \\ \text { with } & \mathbf{y}^{\top} \alpha=0 \\ \text { and } & 0 \leq \alpha_{i} \leq C \quad i=1, n\end{cases}
$$

SVM primal vs. dual

Primal

$\begin{cases}\min _{\mathbf{w}, b, \xi \in \mathbb{R}^{n}} & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i} \\ \text { with } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \\ & \xi_{i} \geq 0 \quad i=1, n\end{cases}$

Dual

$\begin{cases}\min _{\alpha \in \mathbb{R}^{n}} & \frac{1}{2} \alpha^{\top} G \alpha-\mathbf{e}^{\top} \alpha \\ \text { with } & \mathrm{y}^{\top} \alpha=0 \\ \text { and } & 0 \leq \alpha_{i} \leq C \quad i=1, n\end{cases}$

- n unknown
- $d+n+1$ unknown
- $2 n$ constraints
- classical QP
- to be used when n is too large to build G
- G Gram matrix (pairwise influence matrix)
- $2 n$ box constraints
- easy to solve
- to be used when n is not too large

Eliminating the slack but not the possible mistakes

$$
\begin{cases}\min _{\mathbf{w}, b, \xi \in \mathbb{R}^{n}} & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i} \\ \text { with } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \\ & \xi_{i} \geq 0 \quad i=1, n\end{cases}
$$

Introducing the hinge loss

$$
\begin{gathered}
\xi_{i}=\max \left(1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right), 0\right) \\
\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \max \left(0,1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right)
\end{gathered}
$$

Back to $d+1$ variables, but this is no longer an explicit QP

The hinge and other loss

Square hinge: (huber/hinge) and Lasso SVM

$$
\min _{\mathbf{w}, b}\|\mathbf{w}\|_{1}+C \sum_{i=1}^{n^{\prime}} \max \left(1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right), 0\right)^{p}
$$

Penalized Logistic regression (Maxent)

$$
\min _{\mathbf{w}, b}\|\boldsymbol{w}\|_{2}^{2}-C \sum_{i=1}^{n} \log \left(1+\exp ^{-2 y_{i}\left(\mathbf{w}^{\top} x_{i}+b\right)}\right)
$$

The exponential loss (commonly used in boosting)

$$
\min _{\mathbf{w}, b}\|\mathbf{w}\|_{2}^{2}+C \sum_{i=1}^{n} \exp ^{-y_{i}\left(\mathbf{w}^{\top} x_{i}+b\right)}
$$

The sigmoid loss

$$
\min _{\mathbf{w}, b}\|\mathbf{w}\|_{2}^{2}-C \sum_{i=1}^{n} \tanh \left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right)
$$

Roadmap

(1) Supervised classification and prediction
(2) Linear SVM

- Separating hyperplanes
- Linear SVM: the problem
- Optimization in 5 slides
- Dual formulation of the linear SVM
- The non separable case
(3) Kernels
(4) Kernelized support vector machine

Introducing non linearities through the feature map SVM Val

$$
f(\mathbf{x})=\sum_{j=1}^{d} x_{j} w_{j}+b=\sum_{i=1}^{n} \alpha_{i}\left(\mathbf{x}_{i}^{\top} \mathbf{x}\right)+b
$$

$$
\binom{t_{1}}{t_{2}} \in \mathbb{R}^{2}
$$

	x_{1}
x_{2}	
x_{3}	
x_{4}	
x_{5}	

linear in $x \in \mathbb{R}^{5}$

Introducing non linearities through the feature map SVM Val

$$
f(\mathbf{x})=\sum_{j=1}^{d} x_{j} w_{j}+b=\sum_{i=1}^{n} \alpha_{i}\left(\mathbf{x}_{i}^{\top} \mathbf{x}\right)+b
$$

$$
\binom{t_{1}}{t_{2}} \in \mathbb{R}^{2}
$$

$$
\phi(t)=\begin{array}{|c|c|}
\hline t_{1} & x_{1} \\
t_{1}^{2} & x_{2} \\
t_{2} & x_{3} \\
t_{2}^{2} & x_{4} \\
t_{1} t_{2} & x_{5} \\
\hline
\end{array}
$$

linear in $x \in \mathbb{R}^{5}$
quadratic in $t \in \mathbb{R}^{2}$

The feature map

$$
\begin{aligned}
\phi: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{5} \\
\mathrm{t} & \longmapsto \phi(\mathrm{t})=\mathrm{x}
\end{aligned}
$$

$$
\mathbf{x}_{i}^{\top} \mathrm{x}=\phi\left(\mathrm{t}_{i}\right)^{\top} \phi(\mathrm{t})
$$

Introducing non linearities through the feature map

Figura 8. (a) Conjunto de dados não linear; (b) Fronteira não linear no espaço de entradas; (c)
Fronteira linear no espaço de características [28]
A. Lorena \& A. de Carvalho, Uma Introducão às Support Vector Machines, 2007

Non linear case: dictionary vs. kernel

in the non linear case: use a dictionary of functions

$$
\phi_{j}(\mathbf{x}), j=1, p \quad \text { with possibly } \quad p=\infty
$$

for instance polynomials, wavelets...

$$
f(\mathbf{x})=\sum_{j=1}^{p} w_{j} \phi_{j}(\mathbf{x}) \quad \text { with } \quad w_{j}=\sum_{i=1}^{n} \alpha_{i} y_{i} \phi_{j}\left(\mathbf{x}_{i}\right)
$$

so that

$$
f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} \underbrace{\sum_{j=1}^{p} \phi_{j}\left(\mathbf{x}_{i}\right) \phi_{j}(\mathbf{x})}_{k\left(\mathbf{x}_{i}, \mathbf{x}\right)}
$$

Non linear case: dictionary vs. kernel

in the non linear case: use a dictionary of functions

$$
\phi_{j}(\mathbf{x}), j=1, p \quad \text { with possibly } \quad p=\infty
$$

for instance polynomials, wavelets...

$$
f(\mathbf{x})=\sum_{j=1}^{p} w_{j} \phi_{j}(\mathbf{x}) \quad \text { with } \quad w_{j}=\sum_{i=1}^{n} \alpha_{i} y_{i} \phi_{j}\left(\mathbf{x}_{i}\right)
$$

so that

$$
f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} \underbrace{\sum_{j=1}^{p} \phi_{j}\left(\mathbf{x}_{i}\right) \phi_{j}(\mathbf{x})}_{k\left(\mathbf{x}_{i}, \mathbf{x}\right)}
$$

$p \geq n$ so what since $k\left(\mathbf{x}_{i}, \mathbf{x}\right)=\sum_{j=1}^{p} \phi_{j}\left(\mathbf{x}_{i}\right) \phi_{j}(\mathbf{x})$

closed form kernel: the quadratic kernel

The quadratic dictionary in \mathbb{R}^{d} :

$$
\begin{aligned}
\Phi: \quad \mathbb{R}^{d} & \rightarrow \mathbb{R}^{p=1+d+\frac{d(d+1)}{2}} \\
\mathbf{s} & \mapsto \Phi=\left(1, s_{1}, s_{2}, \ldots, s_{d}, s_{1}^{2}, s_{2}^{2}, \ldots, s_{d}^{2}, \ldots, s_{i} s_{j}, \ldots\right)
\end{aligned}
$$

in this case
$\Phi(\mathbf{s})^{\top} \Phi(\mathrm{t})=1+s_{1} t_{1}+s_{2} t_{2}+\ldots+s_{d} t_{d}+s_{1}^{2} t_{1}^{2}+\ldots+s_{d}^{2} t_{d}^{2}+\ldots+s_{i} s_{j} t_{i} t_{j}+\ldots$

closed form kernel: the quadratic kernel

The quadratic dictionary in \mathbb{R}^{d} :

$$
\begin{aligned}
\Phi: \quad \mathbb{R}^{d} & \rightarrow \mathbb{R}^{p=1+d+\frac{d(d+1)}{2}} \\
\mathbf{s} & \mapsto \Phi=\left(1, s_{1}, s_{2}, \ldots, s_{d}, s_{1}^{2}, s_{2}^{2}, \ldots, s_{d}^{2}, \ldots, s_{i} s_{j}, \ldots\right)
\end{aligned}
$$

in this case
$\Phi(\mathbf{s})^{\top} \Phi(\mathrm{t})=1+s_{1} t_{1}+s_{2} t_{2}+\ldots+s_{d} t_{d}+s_{1}^{2} t_{1}^{2}+\ldots+s_{d}^{2} t_{d}^{2}+\ldots+s_{i} s_{j} t_{i} t_{j}+\ldots$
The quadratic kenrel: $\mathbf{s}, \mathrm{t} \in \mathbb{R}^{d}, \quad k(\mathbf{s}, \mathrm{t})=\left(\mathbf{s}^{\top} \mathrm{t}+1\right)^{2}$

$$
\begin{aligned}
& =(\mathbf{s} \mathrm{t}+1) \\
& =1+2 \mathbf{s}^{\top} \mathrm{t}+\left(\mathbf{s}^{\top} \mathrm{t}\right)^{2} \quad \text { computes }
\end{aligned}
$$

the dot product of the reweighted dictionary:

$$
\begin{aligned}
\Phi: \quad \mathbb{R}^{d} & \rightarrow \mathbb{R}^{p=1+d+\frac{d(d+1)}{2}} \\
\mathbf{s} & \mapsto \Phi=\left(1, \sqrt{2} s_{1}, \sqrt{2} s_{2}, \ldots, \sqrt{2} s_{d}, s_{1}^{2}, s_{2}^{2}, \ldots, s_{d}^{2}, \ldots, \sqrt{2} s_{i} s_{j}, \ldots\right)
\end{aligned}
$$

closed form kernel: the quadratic kernel

The quadratic dictionary in \mathbb{R}^{d} :

$$
\begin{aligned}
\Phi: \quad \mathbb{R}^{d} & \rightarrow \mathbb{R}^{p=1+d+\frac{d(d+1)}{2}} \\
\mathbf{s} & \mapsto \Phi=\left(1, s_{1}, s_{2}, \ldots, s_{d}, s_{1}^{2}, s_{2}^{2}, \ldots, s_{d}^{2}, \ldots, s_{i} s_{j}, \ldots\right)
\end{aligned}
$$

in this case
$\Phi(\mathbf{s})^{\top} \Phi(\mathrm{t})=1+s_{1} t_{1}+s_{2} t_{2}+\ldots+s_{d} t_{d}+s_{1}^{2} t_{1}^{2}+\ldots+s_{d}^{2} t_{d}^{2}+\ldots+s_{i} s_{j} t_{i} t_{j}+\ldots$
The quadratic kenrel: $\mathbf{s}, \mathrm{t} \in \mathbb{R}^{d}, \quad k(\mathbf{s}, \mathrm{t})=\left(\mathbf{s}^{\top} \mathrm{t}+1\right)^{2}$

$$
\begin{aligned}
& =\left(\mathbf{s}^{\mathrm{t}}+\mathbf{1}\right) \\
& =1+2 \mathbf{s}^{\top} \mathrm{t}+\left(\mathbf{s}^{\top} \mathrm{t}\right)^{2} \quad \text { computes }
\end{aligned}
$$

the dot product of the reweighted dictionary:

$$
\begin{aligned}
& \Phi: \quad \mathbb{R}^{d} \rightarrow \mathbb{R}^{p=1+d+\frac{d(d+1)}{2}} \\
& \mathbf{s} \mapsto \Phi=\left(1, \sqrt{2} s_{1}, \sqrt{2} s_{2}, \ldots, \sqrt{2} s_{d}, s_{1}^{2}, s_{2}^{2}, \ldots, s_{d}^{2}, \ldots, \sqrt{2} s_{i} s_{j}, \ldots\right) \\
& p=1+d+\frac{d(d+1)}{2} \text { multiplications vs. } d+1 \\
& \text { use kernel to save computration }
\end{aligned}
$$

kernel: features through pairwise comparisons

Kenrel machine

kernel as a dictionary

$$
f(x)=\sum_{i=1}^{n} \alpha_{i} k\left(x, x_{i}\right)
$$

- α_{i} influence of example i
- $k\left(\mathrm{x}, \mathrm{x}_{i}\right)$ the kernel
depends on y_{i}
do NOT depend on y_{i}

Definition (Kernel)

Let Ω be a non empty set (the input space).
A kernel is a function k from $\Omega \times \Omega$ onto \mathbb{R}.

$$
\begin{aligned}
k: \Omega \times \Omega & \longmapsto \mathbb{R} \\
\mathbf{s}, \mathrm{t} & \longrightarrow k(\mathbf{s}, \mathrm{t})
\end{aligned}
$$

Kenrel machine

kernel as a dictionary

$$
f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}, \mathbf{x}_{i}\right)
$$

- α_{i} influence of example i
- $k\left(x, x_{i}\right)$ the kernel
depends on y_{i}
do NOT depend on y_{i}

Definition (Kernel)

Let Ω be a non empty set (the input space).
A kernel is a function k from $\Omega \times \Omega$ onto \mathbb{R}.

$$
\begin{array}{rll}
k: \Omega \times \Omega & \longmapsto \mathbb{R} \\
\mathbf{s}, \mathrm{t} & \longrightarrow k(\mathbf{s}, \mathrm{t})
\end{array}
$$

semi-parametric version: given the family $q_{j}(x), j=1, p$

$$
f(\mathrm{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathrm{x}, \mathrm{x}_{i}\right)+\sum_{j=1}^{p} \beta_{j} q_{j}(\mathrm{x})
$$

In the beginning was the kernel...

Definition (Kernel)

a function of two variable k from $\Omega \times \Omega$ to \mathbb{R}

Definition (Positive kernel)

A kernel $k(s, t)$ on Ω is said to be positive

- if it is symetric: $k(s, t)=k(t, s)$
- an if for any finite positive interger n :

$$
\forall\left\{\alpha_{i}\right\}_{i=1, n} \in \mathbb{R}, \forall\left\{\mathbf{x}_{i}\right\}_{i=1, n} \in \Omega, \quad \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq 0
$$

it is strictly positive if for $\alpha_{i} \neq 0$

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)>0
$$

Examples of positive kernels

the linear kernel: $\mathbf{s}, \mathrm{t} \in \mathbb{R}^{d}, \quad k(\mathbf{s}, \mathrm{t})=\mathbf{s}^{\top} \mathrm{t}$

symetric: $\mathbf{s}^{\top} \mathrm{t}=\mathrm{t}^{\top} \mathbf{s}$
positive: $\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \mathbf{x}_{i}^{\top} \mathbf{x}_{j}$
$=\left(\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}\right)^{\top}\left(\sum_{j=1}^{n} \alpha_{j} \mathbf{x}_{j}\right)=\left\|\sum_{i=1}^{n} \alpha_{i} \mathbf{x}_{i}\right\|^{2}$
the product kernel: $\quad k(\mathbf{s}, \mathrm{t})=g(\mathbf{s}) g(\mathrm{t}) \quad$ for some $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$, symetric by construction
positive:

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} g\left(\mathbf{x}_{i}\right) g\left(\mathbf{x}_{j}\right) \\
& =\left(\sum_{i=1}^{n} \alpha_{i} g\left(\mathbf{x}_{i}\right)\right)\left(\sum_{j=1}^{n} \alpha_{j} g\left(\mathbf{x}_{j}\right)\right)=\left(\sum_{i=1}^{n} \alpha_{i} g\left(\mathbf{x}_{i}\right)\right)^{2}
\end{aligned}
$$

$$
k \text { is positive } \Leftrightarrow(\text { its square root exists }) \Leftrightarrow k(\mathbf{s}, \mathrm{t})=\left\langle\phi_{\mathbf{s}}, \phi_{\mathrm{t}}\right\rangle
$$

Positive definite Kernel (PDK) algebra (closure)

if $k_{1}(\mathrm{~s}, \mathrm{t})$ and $k_{2}(\mathrm{~s}, \mathrm{t})$ are two positive kernels

- DPK are a convex cone:

$$
\begin{array}{r}
\forall a_{1} \in \mathbb{R}^{+} \quad a_{1} k_{1}(\mathbf{s}, \mathrm{t})+k_{2}(\mathbf{s}, \mathrm{t}) \\
k_{1}(\mathbf{s}, \mathrm{t}) k_{2}(\mathbf{s}, \mathrm{t})
\end{array}
$$

proofs

- by linearity:

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j}\left(a_{1} k_{1}(i, j)+k_{2}(i, j)\right)=a_{1} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k_{1}(i, j)+\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k_{2}(i, j)
$$

- assuming $\exists \psi_{\ell}$ s.t. $k_{1}(\mathbf{s}, \mathrm{t})=\sum_{\ell} \psi_{\ell}(\mathbf{s}) \psi_{\ell}(\mathrm{t})$

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k_{1}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) k_{2}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j}\left(\sum_{\ell} \psi_{\ell}\left(\mathbf{x}_{i}\right) \psi_{\ell}\left(\mathbf{x}_{j}\right) k_{2}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right) \\
& =\sum_{\ell} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(\alpha_{i} \psi_{\ell}\left(\mathbf{x}_{i}\right)\right)\left(\alpha_{j} \psi_{\ell}\left(\mathbf{x}_{j}\right)\right) k_{2}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
\end{aligned}
$$

Kernel engineering: building PDK

- for any polynomial with positive coef. ϕ from \mathbb{R} to \mathbb{R}

$$
\phi(k(\mathrm{~s}, \mathrm{t}))
$$

- if Ψ is a function from \mathbb{R}^{d} to \mathbb{R}^{d}

$$
k(\Psi(\mathrm{~s}), \Psi(\mathrm{t}))
$$

- if φ from \mathbb{R}^{d} to \mathbb{R}^{+}, is minimum in 0

$$
k(\mathbf{s}, \mathrm{t})=\varphi(\mathrm{s}+\mathrm{t})-\varphi(\mathrm{s}-\mathrm{t})
$$

- convolution of two positive kernels is a positive kernel

$$
K_{1} \star K_{2}
$$

Example : the Gaussian kernel is a PDK

$$
\begin{aligned}
\exp \left(-\|\mathbf{s}-\mathrm{t}\|^{2}\right) & =\exp \left(-\|\mathbf{s}\|^{2}-\|t\|^{2}+2 \mathbf{s}^{\top} t\right) \\
& =\exp \left(-\|\mathbf{s}\|^{2}\right) \exp \left(-\|t\|^{2}\right) \exp \left(2 \mathbf{s}^{\top} t\right)
\end{aligned}
$$

- $\mathbf{s}^{\top} \mathrm{t}$ is a PDK and function exp as the limit of positive series expansion, so $\exp \left(2 \mathbf{s}^{\top} \mathrm{t}\right)$ is a PDK
- $\exp \left(-\|\mathbf{s}\|^{2}\right) \exp \left(-\|t\|^{2}\right)$ is a PDK as a product kernel
- the product of two PDK is a PDK

some examples of PD kernels...

type	name	$k(s, t)$				
radial	gaussian	$\exp \left(-\frac{r^{2}}{b}\right), r=\\|s-t\\|$				
radial	laplacian	$\exp (-r / b)$				
radial	rationnal	$1-\frac{r^{2}}{r^{2}+b}$				
radial	loc. gauss.	$\max \left(0,1-\frac{r}{3 b}\right)^{d} \exp \left(-\frac{r^{2}}{b}\right)$				
non stat.	χ^{2}	$\exp (-r / b), r=\sum_{k} \frac{\left(s_{k}-t_{k}\right)^{2}}{s_{k}+t_{k}}$				
projective	polynomial	$\left(s^{\top} t\right)^{p}$				
projective	affine	$\left(s^{\top} t+b\right)^{p}$				
projective	cosine	$s^{\top} t /\\|s\\|\\|t\\|$				
projective	correlation	$\exp \left(\frac{s^{\top} t}{\\|s\\|\\|t\\|}-b\right)$				

Roadmap

(1) Supervised classification and prediction
(2) Linear SVM

- Separating hyperplanes
- Linear SVM: the problem
- Optimization in 5 slides
- Dual formulation of the linear SVM
- The non separable case
(3) Kernels
(4) Kernelized support vector machine

using relevant features...

$$
\text { a data point becomes a function } \mathbf{x} \longrightarrow k(\mathbf{x}, \bullet)
$$

input space representation: x

feature space: $k(x,$.

Representer theorem for SVM

$$
\left\{\begin{aligned}
\min _{f, b} & \frac{1}{2}\|f\|_{\mathcal{H}}^{2} \\
\text { with } & y_{i}\left(f\left(\mathbf{x}_{i}\right)+b\right) \geq 1
\end{aligned}\right.
$$

Lagrangian

$$
L(f, b, \alpha)=\frac{1}{2}\|f\|_{\mathcal{H}}^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(f\left(\mathbf{x}_{i}\right)+b\right)-1\right) \quad \alpha \geq 0
$$

optimility condition: $\nabla_{f} L(f, b, \alpha)=0 \Leftrightarrow f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)$
Eliminate f from $L:\left\{\begin{array}{l}\|f\|_{\mathcal{H}}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\ \sum_{i=1}^{n} \alpha_{i} y_{i} f\left(\mathbf{x}_{i}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\end{array}\right.$

$$
Q(b, \alpha)=-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)-\sum_{i=1}^{n} \alpha_{i}\left(y_{i} b-1\right)
$$

Dual formulation for SVM

the intermediate function

$$
Q(b, \alpha)=-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)-b\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\right)+\sum_{i=1}^{n} \alpha_{i}
$$

$$
\max _{\alpha} \min _{b} Q(b, \alpha)
$$

b can be seen as the Lagrange multiplier of the following (balanced) constaint $\sum_{i=1}^{n} \alpha_{i} y_{i}=0$ which is also the optimality KKT condition on b

Dual formulation

$$
\left\{\begin{aligned}
\max _{\alpha \in \mathbb{R}^{n}} & -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)+\sum_{i=1}^{n} \alpha_{i} \\
\text { such that } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
\text { and } \quad & 0 \leq \alpha_{i}, \quad i=1, n
\end{aligned}\right.
$$

SVM dual formulation

Dual formulation

$$
\begin{cases}\max _{\alpha \in \mathbf{R}^{n}}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)+\sum_{i=1}^{n} \alpha_{i} \\ \text { with } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \quad \text { and } 0 \leq \alpha_{i}, \quad i=1, n\end{cases}
$$

The dual formulation gives a quadratic program (QP)

$$
\begin{cases}\min _{\substack{\alpha \in \mathbb{R}^{n} \\ \\ \text { with }}} \frac{1}{2} \alpha^{\top} G \alpha-\mathbb{I}^{\top} \alpha \\ \alpha^{\top} \mathbf{y}=0 \text { and } 0 \leq \alpha\end{cases}
$$

with $G_{i j}=y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
with the linear kernel $f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i}\left(\mathbf{x}^{\top} \mathbf{x}_{i}\right)=\sum_{j=1}^{d} \beta_{j} x_{j}$ when d is small wrt. n primal may be interesting.
the general case: C-SVM

Primal formulation

$$
(\mathcal{P}) \begin{cases}\min _{f \in \mathcal{H}, b, \xi \in \mathbb{R}^{n}} & \frac{1}{2}\|f\|^{2}+\frac{c}{p} \sum_{i=1}^{n} \xi_{i}^{p} \\ \text { such that } & y_{i}\left(f\left(\mathbf{x}_{i}\right)+b\right) \geq 1-\xi_{i}, \quad \xi_{i} \geq 0, \quad i=1, n\end{cases}
$$

C is the regularization path parameter (to be tuned)
$p=1, L_{1} \mathrm{SVM}$

$$
\left\{\begin{array}{cl}
\max _{\alpha \in \mathbb{R}^{n}} & -\frac{1}{2} \alpha^{\top} G \alpha+\alpha^{\top} \mathbb{I} \\
\text { such that } & \alpha^{\top} \mathbf{y}=0 \text { and } 0 \leq \alpha_{i} \leq C \quad i=1, n
\end{array}\right.
$$

$p=2, L_{2} S V M$

$$
\left\{\begin{aligned}
\max _{\alpha \in \mathbb{R}^{n}} & -\frac{1}{2} \alpha^{\top}\left(G+\frac{1}{C} I\right) \alpha+\alpha^{\top} \mathbb{I} \\
\text { such that } & \alpha^{\top} \mathbf{y}=0 \text { and } 0 \leq \alpha_{i} \quad i=1, n
\end{aligned}\right.
$$

the regularization path: is the set of solutions $\alpha(C)$ when C varies

Data groups: illustration

$f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}, \mathbf{x}_{i}\right)$
$D(x)=\operatorname{sign}(f(x)+b)$

useless data well classified

$$
\alpha=0
$$

suspicious data

$$
\alpha=C
$$

The importance of being support

$$
f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

data point	α	constraint value	set
\mathbf{x}_{i} useless	$\alpha_{i}=0$	$y_{i}\left(f\left(\mathbf{x}_{i}\right)+b\right)>1$	I_{0}
\mathbf{x}_{i} support	$0<\alpha_{i}<C$	$y_{i}\left(f\left(\mathbf{x}_{i}\right)+b\right)=1$	I_{α}
\mathbf{x}_{i} suspicious	$\alpha_{i}=C$	$y_{i}\left(f\left(\mathbf{x}_{i}\right)+b\right)<1$	I_{C}

Table: When a data point is «support» it lies exactly on the margin.
here lies the efficiency of the algorithm (and its complexity)! sparsity: $\alpha_{i}=0$

checker board

- 2 classes
- 500 examples
- separable

a separable case

$n=500$ data points

$$
n=5000 \text { data points }
$$

Tuning C and γ (the kernel width) : grid search

Empirical complexity

G. Loosli et al JMLR, 2007

Conclusion

- Learning as an optimization problem
- use CVX to prototype
- MonQP
- specific parallel and distributed solvers
- Universal through Kernelization (dual trick)
- Scalability
- Sparsity provides scalability
- Kernel implies "locality"
- Big data limitations: back to primal (an linear)

