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Ocean's Big Data Mining, 2014

(Data mining in large sets of complex oceanic data: new challenges and solutions)
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Monday, September 8, 2014, 2:00 pm - 3:30 pm

Statistical Methods for detecting
and attributing climate changes

Dr. Philippe Naveau, LSCE/CNRS

In this talk, our goal is to provide a review on the most used statistical methods to detect
and attribute climate changes. The usual statistical framework for detection and attribution
in climatology consists of a class of linear regression methods referred to as optimal
fingerprinting. Three features of this regression problem are the high dimension (in space
and time) with non-sparse covariance matrices, the uniqueness of the observational vector
(there is only one Earth) and the limited number of numerical climate runs tainted by model
error. These constrains lead to open questions concerning the choice of workable
hypothesis and their associated inference schemes.

This talk would have a special emphasis on the analysis of extreme events.

About Philippe Naveau

After obtaining his PhD in Statistics at Colorado State University in 1998, Dr.
Philippe Naveau was a visiting Scientist at National Center for Atmospheric
Research in Boulder, Colorado for three years. Then, he was an assistant
professor in the Applied Math Dept of Colorado University (2002-2004). Since
2004, he is a research scientist at the French National Research Center
(CNRS) and his research work has focused on environmental statistics, especially in
analyzing extremes events.
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Statistics and Earth sciences

“There is, today, always a
risk that specialists in two
subjects, using languages
full of words that are
unintelligible without studly,
will grow up not only, without
knowledge of each other’s
work, but also will ignore the
problems which require
mutual assistance”.

Quiz
Gilbert Walker
Ed Lorenz
C) Guillaume Maze

Rol Madden
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Spatial and temporal scales in weather and climate

Seconds

10"
Climate variation ——J»
10 Year
Seasonal cycles '-'
Intraseasonal (MJO)

Month >
10‘ Planetary waves ——Jp»

Week Tropical cyclones ——Jj» S

AN
Day Fronts, squall lines ——3» L))
«——— Cloud clusters
10* o
"
2
Hour ‘t‘ sf——— Thunderstorms
«4——— Tornadoes

102 44— Thermals

Min

ot
‘5\ «—— Turbulence

10°

102 10°  10*
Meters

108

108

107

10°

©The COMET Program



“Darkness” by Lord Byron

“The bright sun was extinguish'd and the stars did wander darkling
in the eternal space, rayless, and pathless, and the icy earth swung
blind and blackening in the moonless air; Morn came and went -
and came, and brought no day ...”

Written in 1816 on the shores of Lake Geneva in the midst of the year without
a summer.



Tambora 1815 (illustrations by G. & W.R. Harlin)

= Plutarch noticed that the eruption of Etna in 44 B.C. attenuated the sunlight and caused crops to shrivel up in ancient Rome.

=- Benjamin Franklin suggested that the Laki eruption in Iceland in 1783 was related to the abnormally cold winter of 1783-1784.



Natural Climate Variability

Two important natural external forcing factors :
m Solar irradiance variations (long-trend)
m Explosive volcanism : Cooling effect on climate (short-lived)



Solar forcings

Solar Irradiance [W/m?2]
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Antropogenic forcings

Turner, The Fighting Temeraire - tugged to her Last Berth to be broken up :
1838-39



Modeling the Climate System

. Includes the atmosphere,
land, oceans, ice, and biosphere




Model Grid with Resolved Processes

Surface radiation

Incoming
solar &,
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Detection & Attribution

Detection
Demonstrating that climate or a system affected by climate has changed in
some defined statistical sense ' without providing a reason for that change.

IPCC Good Practice Guidance Paper on Detection and Attribution, 2010

1. statistically usually, significant beyond what can be explained by internal (natural)
variability alone



Examples of a “Detection” statement

“Warming of the climate system is unequivocal, and since the
1950s, many of the observed changes are unprecedented over
decades to millennia. The atmosphere and ocean have warmed, the
amounts of snow and ice have diminished, sea level has risen, and
the concentrations of greenhouse gases have increased.”

IPCC-WG1-AR5 SPM



Temperature anomaly (°C) relative to 1961-1990

0.6

0.4

0.2

Observed globally averaged combined land and ocean
surface temperature anomaly 1850-2012

Annual average
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Observed change in surface temperature 1901-2012

-06 -04 -02 0 02 04 06 08 10 125 15 175 25
(°C)

IPCC-WG1-AR5 SPM



Examples of a “Detection” statement

These figures and statements don’t say anything about the causes of the
observed warming.



Detection & Attribution

Attribution
Evaluating the relative contributions of multiple causal factors 2 to a change or
event with an assignment of statistical confidence.

2. casual factors usually refer to external influences, which may be anthropogenic (GHGs, aero-
sols, ozone precursors, land use) and/or natural (volcanic eruptions, solar cycle modulations



Detection & Attribution

Attribution
Evaluating the relative contributions of multiple causal factors 2 to a change or
event with an assignment of statistical confidence.

Consequences

Need to assess wether the observed changes are
m consistent with the expected responses to external forcings
®m inconsistent with alternative explanations

2. casual factors usually refer to external influences, which may be anthropogenic (GHGs, aero-
sols, ozone precursors, land use) and/or natural (volcanic eruptions, solar cycle modulations



What do you need in D&A ?

Observations of climate indicators
Inhomogeneity in space and time (& reconstructions via proxies)

An estimate of external forcing

How external drivers of climate change have evolved before and during the
period under investigation — e.g., GHG and solar radiation

A quantitative physically-based understanding

How external forcing might affect these climate indicators. — normally
encapsulated in a physically-based model

An estimate of climate internal variability >
Frequently derived from a physically-based model



Classical assumptions

Key forcings have been identified
Signals are additive
Noise is additive

The large-scale patterns of response are correctly simulated by climate
models

Statistical inference schemes are efficient



Examples of a “Attribution” statement (see F. Zwiers’ talk)

Attribution results

TAR (2001)

— “most of the observed warming over the last 50 years is li.<=]y to
have been due to the increase in greenhouse gas concentrations”

AR4 (2007)

— li<2ly replaced with very likely
— “GHGs lii<=]y would have caused more warming than observed”

ARS5 (2013)

— ‘“Itis extremely likely that human influence has been the dominant
cause of the observed warming since the mid-20th century.”

— “Greenhouse gases contributed a global mean surface warming Ii:<=]y
to be in the range of 0.5°C to 1.3°C over the period 1951 to 2010 ...”



Big data : statistical versus nhumerical models
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Big data : statistical versus nhumerical models
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Two classical statistical approaches in D&A

1- Linear regressions

m Non-optimal techniques
m Ordinary and total least square regression
m Error-in-Variables



Two classical statistical approaches in D&A

1- Linear regressions

m Non-optimal techniques
m Ordinary and total least square regression
m Error-in-Variables

2- FAR (Fraction of Attributable Risk)

The FAR = the relative ratio of two probabilities, py the probability of
exceeding a threshold in a “world that might have been (no antropogenic
forcings)” and py the probability of exceeding the same threshold in a “world
that it is”

FAR =P —Po,
P

Example of an specific event, the 2003 summer heat wave over Europe.



1- Linear regressions

Outline
m A quick overview
m Statistical issues
m Current solutions



One huge problem (from a stat perspective)

There is only one Earth!
One unique observation, ie. a very long vector (space * time)



One huge problem (from a stat perspective)

There is only one Earth!
One unique observation, ie. a very long vector (space * time)
Methods based on learning from a large training set can’t be easily applied



One key idea : use climate models to generate Earth’s avatars
a
10| Observations

All forcing

00

Temperature anomaly (°C)

Pinatubo
Santa Maria Agung EI Chichon

-10
1900 1920 1940 1960 1980 2000
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o

107 Observations

Solar & volcanic

Temperature anomaly (°C)

-0.5
Pinatubo
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Year

Source : Claudia Tebaldi



The basic regression scheme

Observed, 1901-2005 ANT gimulations, 1901-2005

Trend in °C per decade

-0.15-0.10-0.050.00 0.05 0.10 0.15 /

Y X (xanﬁ nat)

L»Y XB+8

Gabi Hegerl's presentation at Geneva IPCC WG1/WG2 Meeting in Sept 2009




The basic Gaussian regression scheme

~ —1
3= (xTz*U() X'y
with under the Gaussian assumption with know -

E(3) = 3 and Var(B) = ()(Tz*x)_1



The basic Gaussian regression scheme

~ —1
3= (xTz*U() X'y
with under the Gaussian assumption with know -

E(3) = 3 and Var(B) = ()(Tz*x)_1

Practical questions

m3=0+Cl?
m 3=1+CI?



An example

Joint 90% confidence region for ANT
and NAT detection in TNn and TXx

TNn TXx

o Min et al, 2013, Fig. 9

T T T T
-2 0 2 4 6 -2 2 4 6
ANT ANT

Details: 1951-2000 TNn and TXx from HadEX (Alexander et al, 2006), decadal
time averaging, “global” spatial averaging, CMIP3 models (ANT — 8 models, 27
runs; ALL — 8 models, 26 runs; control — 10 models, 158 chunks)

Source : Francis Zwiers



An example

Calculating attributed change

Usual approach is to calculate trend in signal,
multiply by scaling factor, and apply scaling factor

uncertainty

Observed warming
trend and 5-95%
uncertainty range
based on HadCRUT4
(black).

Attributed warming
trends with assessed

likely ranges (colours).

Source : Francis Zwiers

Observed
GHG

ANT
I—‘| OA
—— NAT

—— Internal Variability

-0.5 0.0 on 05 1.0
c IPCC WG1 ARS5, Fig 10.5




The basic Gaussian regression scheme

N —1
3= (XTZ_1X) XTs 'y
with under the Gaussian assumption with know ©

E(3) = s and Var(3) = (X"z'X)

Practical questions

m3=0+ClI?
m3=14+Cl?

Problem done ? ... but
m What'’s about the dimension ?
m What's about the estimation of ¥~ ?
m What'’s about the numerical models X ?



ion &
Attribution

Ensemble
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What’s about the dimension ?

Typical climate dataset (e.g. near-surface temperature)
m Spatial dimension : 5° x 5° ~ 2600 grid-points
m Temporal dimension : 50 - 100 ans (instrumental period)
m Dimension of Y~ 10°
m Internal variability is described by ¥ ~ 10° x 10°



What’s about the dimension ?

Typical climate dataset (e.g. near-surface temperature)

m Spatial dimension : 5° x 5° ~ 2600 grid-points

m Temporal dimension : 50 - 100 ans (instrumental period)
m Dimension of Y~ 10°

m Internal variability is described by ¥ ~ 10° x 10°

Warming : X is not sparse because of teleconnections

m The estimation of X requires at least 10° realisations of ¢, i.e. 107 yrs of
control simulations (vs about ~ 10* yrs available).



What’s about the dimension ?

Typical climate dataset (e.g. near-surface temperature)

m Spatial dimension : 5° x 5° ~ 2600 grid-points

m Temporal dimension : 50 - 100 ans (instrumental period)
m Dimension of Y~ 10°

m Internal variability is described by ¥ ~ 10° x 10°

Warming : X is not sparse because of teleconnections
m The estimation of X requires at least 10° realisations of ¢, i.e. 107 yrs of
control simulations (vs about ~ 10* yrs available).
Two classical options

m Decrease the dimension of Y
m Find accurate estimator of X in large dimension

Source : Aurélien Ribes



Decreasing the dimension at the global scale

Quick solutions

m Decadal means,
m Projection on principal components,

m Projection on spherical harmonics (e.g. truncation T4, ~ spatial scales >
5000 kms),

m Use of simple climate indices (globale mean, land-sea contrast,
inter-hemispheric contrast, annual cycle, etc).

Source : Aurélien Ribes



— Recent studies (e.g., Jones et al, 2013) use

+ Gridded (5°x5°) monthly mean surface temperature
anomalies (e.g., HadCRUT4, Morice et al, 2012)

* Reduced to decadal means for 1901-1920, 1911-1920
... 2001-2010 (11 decades)

+ Often spatially reduced using a “T4” spherical harmonic
decomposition = global array of 5°x5°decadal
anomalies reduced to 25 coefficients

* Y, .4 therefore has dimension n=11x25=275

Source : Francis Zwiers



What’s about the covariates X ?

Signals X, i=1, ..., s
— Number of S|gnals s is small
« s=1 > ALL

+ =2 > ANT and NAT
+ $=3 > GHG, OANT and NAT
e 5=4 > ...
— Can'’t separate signals that are “co-linear”

— Signals estimated from either
* single model ensembles (size 3-10 in CMIP5) or

» multi-model ensembles (~172 ALL runs available in
CMIP5 from 49 models, ~67 NAT runs from 21 models ,
~54 GHG runs from 20 models)

— Process as we do the observations

 Transferred to observational grid, “masked”, centered,
averaged using same criteria, etc.

Source : Francis Zwiers



Still, we need to estimate the internal variability >
Is it a big deal ?



Is it a big deal ?

Still, we need to estimate the internal variability >

LETTERS

PUBLISHED ONLINE: 31 AUGUST 2014 | DOI: 10.1038/NCLIMATE2355

Contribution of natural decadal variability to
global warming acceleration and hiatus

Masahiro Watanabe'™,
and Masahide Kimoto'

lobal

, Hideo Shiogama?, Hiroaki Tatebe?, Michiya Hayashi', Masayoshi Ishii*

Reasons for the apparent pause in the rise of g
surface air temperature (SAT) after the turn of the century
has been a mystery, undermining confidence in climate
projections™. Recent climate model simulations indicate this
warming hiatus originated from eastern equatorial Pacific
cooling* associated with strengthening of trade winds®. Using
a climate model that overrides tropical wind stress anomalies
with r 1958-2012, we show that decadal

anomalies of global SAT referenced to the period 1961-1990
are changed by 0.1, 0.13 and —0.11°C in the 1980s, 1990s
and 2000s, respectively, without variation in human-induced
radiative forcing. They account for about 47%, 38% and 27% of
the respective temperature :hange. The dominant wind stress
variability consistent with t

the deceleranon/acceleranon ofthe Pacific trade winds, which

model si

can be robustly y
forced by observed sea surface temperature excluding anthro-
pogenic warming components. Results indicate that inherent
decadal climate variability contributes considerably to the
observed global-mean SAT time series, but that its influence

Linear trends 19612012 2003-2012
091 HadCRUT 014 ~0.06
5 ASYMH 015003 007009
1 ASYM-C 0002003 -011+013 /
F Mip3+5 |4
06 P P
g 03
E o0
©
-03 s
A
1960 1970 180 1990 2000 2010
Year

Figure 1| Observed and simulated change in global-mean surface
I time series relative to 1961-1990 mean derived

on decadal-mean SAT has gradually relative to the
rising anthropogenic warming signal.

The change of global-mean SAT during the first decade
of the twenty-first century was less than 0.05°C, indicating a
considerably slower rate of warming than during the late twentieth
century*®. The causes of this global warming hiatus, which are still
under debate, can be categorized into either internal or external
processes of the climate system. The principal candidates for
external drivers of the hiatus are the weakening of solar activity’
B

AT RIS

from observations (black), ASYM-H (red) and ASYM-C (blue)
experiments. Shading represents ranges of 95% confidence. Linear trends
for 1961-2012 and 2003-2012 are denoted at the top. Time series from the
combined CMIP3 and CMIPS models is also shown by the grey curve, with
shading representing one standard deviation. Red and blue vertical dashed
lines show the occurrence of EI Nifio and La Nifia events, respectively. Three
major volcanic eruptions (Agung, EI Chichén and Pinatubo) are indicated by
green triangles



Still, we need to estimate the internal variability ©

Climate models can provide

m [¢] = Control runs = a few simulations with constant (stationary) forcing
that are used to estimate the so-called internal variability *
m Ensembles runs = a few GCM simulations with the same forcing but

different initial conditions (give information on uncertainty associated
with model error)

Notations : [e] ~ N(0,X) (also denoted = (¢)) with dimension n x r and [e|y]
for conditional pdfs



Still, we need to estimate the internal variability ©

Climate models can provide
m [¢] = Control runs = a few simulations with constant (stationary) forcing
that are used to estimate the so-called internal variability *

m Ensembles runs = a few GCM simulations with the same forcing but
different initial conditions (give information on uncertainty associated
with model error)

Notations : [e] ~ N(0,X) (also denoted = (¢)) with dimension n x r and [e|y]
for conditional pdfs

A fundamental statistical roadblock
The empirical estimator of the internal variability

g 17
r

is unbiased but has a very poor estimator if r small



Estimation of

The idea of regularisation

T = - a)é + aA
with A is often chosen to be proportional to the identify matrix
m Shrinkage estimator (LWO04, Ledoit and Wolf, 2004)
m D&A see RPT12 Ribes A., S. Planton, L. Terray
m Link with James-Stein estimator
m Link with Bayesian a priori



Statistics and Earth sciences

“There is, today, always a
risk that specialists in two
subjects, using languages
full of words that are
unintelligible without study,
will grow up not only, without
knowledge of each other’s
work, but also will ignore the
problems which require
mutual assistance”.
Quiz

m (A) Gilbert Walker

m (B) Ed Lorenz

m (C) Guillaume Maze

m (D) Rol Madden




Pierre Simon Laplace (1749-1827)

“Lanalyse des probabilités
assigne la probabilité de ces
causes, et elle indique les
moyens d’'accroitre de plus
en plus cette probabilité.”
“Essai Philosophiques sur
les probabilités” (1774)




Bayes’ formula = calculating conditional probability

[ [01v] o< [yle] = [0]]

Rev. T. BAves

1701(?)- 1761 “An essay
towards solving a Problem in
the Doctrine of Chances”
(1764)



Recall of Gaussian basics

Let Z; and £ a bivariate normal distribution with means x4 and p2 and a
i1 Iy
Y2 XYoo |’

Z I 241 Xi2
(%)~wCn) (e =) L
Conditioning

Then, the conditional distribution of Z; given Z is described by

covariance matrix [

[Zi|Ze = 23] ~ N |1 + 1255 (220 — pi2), T11 — ):1222_21):21] (2)



Estimating jointly 5 and *

normalization factor

T

p(B, 2 | y,e) x Ny | 26,%) x Il_; N(&; | ) x 7(8) x n(X)

N ¥ J AN g J

a posteriori pdf of parameters  and =

update term from observations y and & (model likelihood)

v
a priori pdf of parameters § and =

Source : Alexis Hannart



Estimating jointly 5 and *

We use a uniform, improper prior for f3:

p(B, 2 | y,€) x Ny | 26, %) x i, N(ei | E) x 7(8) x m(%)
W—/

|:> a priori pdf of parameters f and =
) ()1



Estimating jointly 5 and *

Choosing an informative a priori pdf for £ < regularizing =

We now open a parenthesis to show that the choice of an informative prior
for X corresponds to a linear regularization.

Let us return to the standard covariance model:

p(3 | e) o< Iy Nei | 2) x (%)



Estimating jointly 5 and *

Choosing an informative a priori pdf for £ < regularizing =

|:> Inverse Wishart Conjugate a priori pdf:

(E) =W (2 |r,Q)

— 2% T,(9)71 Q)3 |27 exp {1 Tr(QE1)}

x [ 20 ® _"_lexp{ TH(AS- 1)}

2(1 a)

|:> We reparameterize this conjugate prior in o and A

(,A)=(525L -2 ) e (1v,2) = (25 +n+1,22 A)

r4v—n—1’ v—n—1 -«

(@, A) € [0,1] x S+*




Estimating jointly 5 and *

Choosing an informative a priori pdf for = < regularizing =

|:> a priori mean and variance under the Inverse Wishart pdf:
]E(Z | a, A) =A

V(Zi; | o, A) ~ Z2(AL + AyA;)

ar

|:> a posteriori mean under the Inverse Wishart pdf :

E(E|e,a,A)=(1-a)S+aA (lec=8§)

|:> Link with linear shrinkage towards identity (LWO04):
choose A = Al and select optimal values for A and a.




Estimating jointly 5 and ©
Choosing an a priori pdf for § and =
|:> Returning to our model, we choose the Inverse Wishart
Conjugate a priori pdf for =
p(B, X |y,e) x N(y | z6,X) x I, N(e; | B) x 7(8) x (%)

W_/

|:> a priori pdf of parameters f§ and =
) @1

(| a,A)=WE]|a,A)
: (@,A) € [0,1] x §**



Estimating jointly 5 and *
Deriving the marginal a posteriori pdf, mean and variance of §
After a few calculations to integrate out X, we obtain:

TWB|B,Qv+r+1-p) ~N@G|BQ)

|:> And the following estimators of f, its variance, and X:

= (@ '2) (@)

{O>

<

1 -,/ 1 1 ’ 1 1./ 1 ~
S-1_$-1p'S 1) 1'S— _ _
y' ( i a( )~ )y (.’L‘,E ICB) 1
1+ (n—p)

S =aA+(1-a)S
-



Estimating jointly 5 and *
Deriving the marginal a posteriori pdf, mean and variance of §

" ﬁA _ (x/f;—lx)—l(x/f}—ly)

A ey (Bl 1) ' E )y 15 —1,.\-1
§ Q== =2 (np) (@Xe)

~

Y =aA+(1-a)S

The estimator of {3 is the same as the one proposed by RPT12
This gives further theoretical grounding to this estimator.

However, the estimator of its variance differs, as it includes a
scaling factor.

41

RPT12 : Ribes A., S. Planton, L. Terray



Estimating jointly 5 and ©

Simulation-based performance comparison

= Simulations:

o

[e]
O
O

n=100,p=3,r=10, 20, ..., 100.

p=(,...,1).

2, x randomly generated from Inverse Wishart pdf and Gaussian pdf.
y, € randomly generated from model assumptions

»  Performance metrics:

(e]

o

(e]

empirical mse = % Zil(éz - /3)/(31 - /3)

theoretical mse =1 Ezlil E ((BZ _ ﬁ)'(ﬁi _ ﬁ)) —1 Ezlil Tr(ﬁz)

normalization to empirical mse with known X.



Estimating jointly 5 and *

When a is known (here =0.6), the Bayesian estimator
outperforms both mle. The estimate of its variance is unbiased.

—+—pmle
==O—pmle 2x
@ =—O— bayesian
£
3 bayesian th.
E

10 20 30 40 50 60 70 80



Estimating jointly 5 and *

However, in practice, o is usually not known. The LWO04
approach is able to yield an estimate only when A = Al

= Ledoit and Wolf 2004, JMVA:
o optimal value of a for a target A proportional to the identity
o afew extensions in very specific cases of A (later on)
o no general expression available for A unspecified



Estimating jointly 5 and *

For a general A, we use instead the following estimate for a

= Hannart and Naveau 2013, submitted to JMVA:
o optimal value of o for any target A:

o = argmaxaepy (2% +n+1)log |2 A| - (12 +n+1)log[S + 1% A|

+ 2log (To{3(Z5 +n+ D}/ To{3 (25 +n+1)})}

— l1-a




Estimating jointly 5 and *

The obtained Bayesian estimator with estimated o now

achieves the same performance as the Bayesian estimator with
known .

—O— bayesian

—O— bayesian LW /RPT12

0

bayesian th.

bayesian LW th.

mse / mse,

—O— bayesian HN13

bayesian HN13 th.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9



What’s about the GCM ?(source : ipcc Ars wa1)

1951-2010 trend Scaling factor 1951 2010 trend Scaling factor
TTTTT T T T T —b—M\\\\\\\-ﬁ-\\
] (2) e )
=5
NorESM1-M T :
=3
IPSL-CMSALR :
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|
=
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Figure 10.4 | (2) Estimated contributions of greenhouse gas (GHG, green), other anthropogenic (yellow) and natural (blue) forcing components to observed global mean surface
temperature (GMST) changes over the 1951-2010 period. (b) Corresponding scaling factors by which simulated responses to GHG (green), other anthropogenic (yellow) and
natural forcings (blue) must be multiplied to obtain the best fit to Hadley Centre/Climatic Research Unit gridded surface temperature data set 4 (HadCRUT4; Morice et al.,, 2012)
observations based on multiple regressions using response patterns from ine climate models individually and multi-model averages (multi. Results are shown based on an analysis
over the 19012010 period (squares, Ribes and Terray, 2013), an analysis over the 18612010 period (triangles, Gillet et al, 2013) and an analysis over the 19512010 period
(diamonds, Jones et al., 2013). (c, ) As for (a) and (b) but based on multiple regressions estimating the contributions of total anthropogenic forcings (brown) and natural forcings
(blue) based on an analysis over 1901-2010 period (squares, Ribes and Terray, 2013) and an analysis over the 1861-2010 period (triangles, Gillett et al, 2013). Coloured bars.
show best estimates of the attributable trends (a and c) and 5 to 95% confidence ranges of scaling factors (b and d). Vertical dashed lines in (a) and (c) show the best estimate
HadCRUT4 observed trend over the period concerned. Vertical dotted lines in (b) and d) denote a scaling factor of unity.



Internal variability within the GCM X

A new source of uncertainty
The matrix of actual regressors x* of size n x p is not known with certainty
and the observed matrix X is assumed to be a noised version of it

X=Xx"+v

where [v;] ~ N(0, Q;)



Internal variability within the GCM X

A new source of uncertainty

The matrix of actual regressors x* of size n x p is not known with certainty
and the observed matrix x is assumed to be a noised version of it

X=x"+v
where [vj] ~ N(0, Q;)

A difficult problem to solve

Even with only one regressors p = 1, this is a non-parametric problem with n
unknowns and an unknown matrix Q of size n x n



Error-In-Variable model (EIV)

A new system with four unknowns 3, x*, Q and ©

y =X"8+e¢, withe~ Ny(0,X),
X =X+, with v ~ N,(0,9Q),



Error-In-Variable model (EIV)

A new system with four unknowns 3,x*, Q and *

y =X'B+c¢, withe ~ N;(0,X),
X :X*+y, Wlthl/NNn(07Q)7

A short bibliography

No known solution for the general case
Univariate EIV Adcock [1878] & Gillard [2010]
v = 0in the D&A, see Allen & Tett (1999)

Q; = X/n, Allen & Stott (2003)

Q; = A + X/n, Huntingford et al. (2006)

Covariances estimation (Ribes, A., S. Planton, and L. Terray (2012)),
classically a two-step plugging.



Error-In-Variable model (EIV)




EIV with known covariances (source : Hannart, Ribes, Naveau, GRL, 2014))
EIV system

y =x*B4e, withe ~ Np(0, ¥),
X  =x* 4+ v, withv ~ Np(0, Q),

Likelihood function

£B.x" 1y %) = =50 =X BYET (Y = x"B) = 3 T, 06 = xR (0 = X))

MLE equations

ﬁ - (X*/271X*)_1 (X*/Zf'ly)

X = (@7 +E7) T (BT +Q ) fori=1,..p

1



EIV with known covariances (source : Hannart, Ribes, Naveau, GRL, 2014))

EIV system
y =x"B+e, withe ~ ANp(0, X),
{ X  =x* 4+ v, withv ~ Np(0, Q),
A Gibbs type algorithm

«initialization: x** = x and ﬂ‘o) ®Ex)T®E ).

«iterationstep1: x" " = (@1 + g’z )15y —(r) + Q;'x)foreachi.
« iterationstep2: ﬂ(f“) = (x*+D Z‘1x*(f“)) (x*“‘f‘) Z ).

« stopping: repeat iterations until |0 — pO|1 /11O < .

Confidence intervals for
Derived from the profile likelihood

£i(p; 1y x) = max £(5.x" | y.%)



EIV with known covariances (source : Hannart, Ribes, Naveau, GRL, 2014))
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Figure 1. (a-d) llustration of the inference procedure for a simulation n = 275,p = 2,and & = 7 and (e and f) per-
formance results. Data scatterplot (x,..) (blue dots) and (x;.y) (green circles) shown in Figure 12. Contour plot of the
negative profile loglikelihood ;) and trajectory of §* showing convergence to the minimurn shown in Figure b,
Plot of the negative profile loglikelihood ~,(f;) shown in Figure Tc. Plot of the 2 probability level and confidence
interval shown in Figure 1d. Average mean squared error of the estimator obtained with our procedure (EIV, black line],
LS (blue line), and OLS (e line) shown in Figure 1f. Frequency of the actual value of f falling within the 90% confidence
interval for our procedure, TLS, and OLS shown in Figure 1f



EIV statistical challenges
Classical system

X*B + e, with e ~ Ap(0, %),
x* + v, withv ~ Np(0, Q),
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X <
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Inference difficulty
Estimating jointly 8, x*,Q and X, see our previous section of the Whishart’s
prior on
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Classical system

y =x*B + ¢, withe ~ Np(0, X),
x  =x* + v, withv ~ Np(0, Q),

Inference difficulty

Estimating jointly 8, x*,Q and X, see our previous section of the Whishart’s
prior on
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EIV statistical challenges
Classical system

y =x*B + ¢, withe ~ Np(0, X),
x  =x* + v, withv ~ Np(0, Q),

Inference difficulty

Estimating jointly 8, x*,Q and X, see our previous section of the Whishart’s
prior on

Possible new model definition (ongoing research)

Yy =Y'+e withe~ Nn(o» Z): v/
M { X :X*—‘,—I/7 W|thVNNn(Oaﬂ)7 &M

X<
Il
<1

*
+
™
=)
—
=0
o
2
£
e
M
ol

with
[X*“L, A] ~ N’n(/“l‘7A) and [y*|,LL, A] ~ Nn(iu‘vA)

Goal : computing the Bayes factor

The posteriors odds ratio
S LU
T [My]

compares the models M and m
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Back to D&A

Attribution
Evaluating the relative contributions of multiple causal factors ® to a change or
event with an assignment of statistical confidence.

3. casual factors usually refer to external influences, which may be anthropogenic (GHGs, aero-
sols, ozone precursors, land use) and/or natural (volcanic eruptions, solar cycle modulations



Questions for D&A

-

e s it possible to define « causality » more precisely ?

e s it possible to quantify « causal evidence » more
rigorously ?

e Are the causal claims regarding the anthropogenic
influence on climate justified ?

e Can we formulate a unified « causal evidencing
\ framework » for climate science ?

Coming slides : Hannart, A., Pearl J. Otto F., P. Naveau and M. Ghil. (submitted). Counterfactual causality theory for the attribution of

weather and climate-related events



The cornerstone of causality: counterfactual definition

e D. Hume, An Enquiry Concerning Human
Understanding,1748
« We may define a cause to be an object
followed by another, where, if the first object
had not been, the second never had existed. »

e D. K. Lewis, Counterfactuals, 1973

« We think of a cause as something that makes
a difference, and the difference it makes must
be a difference from what would have
happened without it. Had it been absent, its
effects would have been absent as well. »

D. Lewis, 20th century



Consolidation of a standard causality theory (1980-1990)

e Common theoretical corpus on
causality

what does «X causes Y» mean ?
how does one evidence a causality
link from data ?

philosophy, artificial intelligence,
statistics.

statistics alone not enough - more
concepts needed.

e J. Pearl (2000), Causality: models,
reasoning and inference,
Cambridge University Press.

e Turing Award 2004.

CAUSALITY

MODELS, REASONING,
AND INFERENCE
T

JUDEA PEARL

e Provides clear semantics and sound logic for causal reasoning.



Conditional probability at work

e LetX, Y, Zberandom variables (e.g. binary).

X: barometer

Y: rain

Z: road wet

W: low pressure system

P(Z|X,Y)=P(Z|Y)

Em) < P(Z|Y,W) = P(Z]Y)

PY | X,W) =P | W)



Dependence hierachy

e LetX, Y, Zberandom variables (e.g. binary).
— X: barometer
— Y:rain
— Z:road wet
— W: low pressure system

P(X,Y,Z,W)=P(W).P(X |W).P(Y |W).P(Z|Y)



Oriented graphs

— visual representation of the conditional independence structure of a joint
distribution

low pressure system

barometer @ rain
) w

P(X,)Y,Z,W)=PW).P(X |W).P(Y |W).P(Z|Y)




Interventional probability

e Limitation of oriented graphs

— identifiability: several causal graphs are compatible with the same pdf
(and hence with the same observations).

P(X,Y)=P(X).P(Y | X)=P(Y).P(X |Y)

4 4

X =Y Y - X

— Need for disambiguation.

‘ experimentation



Interventional probability

e New notion:
— intervention do(X=x)
— interventional probability P(Y | do(X=x)) = P(Y))

the probability of rain forcing the barometer to decrease,
in an experimental context in which the barometer is manipulated

L)

P(Y | do(X = 1)) # P(Y | X = z)

4

the probability of rain knowing that the barometer is decreasing,
in a non-experimental context in which the barometer evolution is left unconstrained



Interventional probability

e Property:
— Exogeneity: X exogenous if X has no parents
— in this case:

PY |do(X =z)) =P(Y | X =x)



Fundamental difference : necessary and sufficient causation

e Definitions:

— “Xs a necessary cause of Y” means that X is required for Y to occur but
that other factors might be required as well.

— “Xis a sufficient cause of Y’ means that X always triggers Y but that Y
may also occur for other reasons without requiring X.

e Examples:
— clouds are a necessary cause of rain but not a sufficient one.
— rain is a sufficient cause for the road being wet, but not a necessary one.



Fundamental difference : necessary and sufficient causation

e Definitions:

— Probability of necessary causality = PN = the probability that the event
Y would not have occurred in the absence of the event X given that both
events Y and X did in fact occur.

— Probability of sufficient causation = PS = the probability that Y would
have occurred in the presence of X, given that Y and X did not occur.

e Formalization:
PN=4 P(Yp=0|Y =1,X=1)
PS=4s P(Y1=1|Y=0,X=0)
PNS =4 P(Yo =0,Y;1 =1)



Necessary and sufficient causation

e How to calculate PN, PS and PNS ?
— difficult in general.
— closed formula under the assumption of monotonicity:

—P(Y =1)
PN=1- ;}:_2 + 1};?)(:1,}0’:1)

PS =1- 12 poP=L
1-po P(X=0,Y=0)

PNS = P(Y; = 1) — P(Y, = 1)

where:
p1 =P(Y=11X=1): factual probability of the event
p0 =P(Y=11X=0): counterfactual probability of the event
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Big data : statistical versus nhumerical models
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Back to climate sciences

anthropogenic natural
forcing forcing

internal climate response model
variability variable error



anthropogenic natural
forcing forcing
factual run:
« HIST »
internal climate response model

variability variable error



anthropogenic natural
forcing forcing
internal climate response

variability

counterfactual run
w.r.t.
anthropogenic forcing:
« NAT »



anthropogenic natural
forcing forcing counterfactual run
w.r.t.
natural forcing:
« ANT »

N

internal climate response model
variability variable error



The 2003 European heatwave stottp. A, stone D. A., Allen M. R. (2004). Human contribution to the European heatwave of
2003. Nature,

Methodology (1 ) Analyse JJA mean
tempera’?urgsfpvedra )
reviously defined region
Met Office fhat inciudles Central
Europe

T e + Select an extreme ]

| temperature threshold just
above the previous
warmest year

» Determine mean
temperature in “world that
is” and compare to mean
temperature in “world that
might have been”

* By analy_sin_? the year to
yeéar variability around the
mean climate’in the two
worlds calculate the
probabilities P1, PO of
exceeding the threshold in
the two worlds



The 2003 European heatwave st r. A., Stone D. A., Allen M. R. (2004). Human contribution to the European heatwave of

2003. Nature,

“Using a threshold for mean summer temperature that was
exceeded in 2003, but in no other year since the start of the
instrumental record in 1851, we estimate it is very likely
(confidence level >90%) that human influence has at least doubled
the risk of a heatwave exceeding this threshold magnitude”
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Revisiting the 2003 European heatwave with counterfactual theory

EVT extrapolation (GEV) based on HIST and NAT ensembles (Hadley
center model)

cfact.

N

\
i e

0 0.5 1 1.5 2 25 3

q p0 = 0.0008 (1/1250), p1 = 0.008 (1/125)




p0 = 0.0008 (1/1250), p1 = 0.008 (1/125)

PN = 0.9, PS = 0.0072, PNS = 0.0072

q « CO2 emissions are very likely to be a necessary cause, but are

virtually certainly not a sufficient cause, of the 2003 heatwave. »

This highlights a distinctive feature of unusual events: several necessary causes
may often be evidenced but rarely a sufficient one



238

« Itis very likely (>90%) that CO2 emissions have increased the
frequency of occurrence of 2003-like heatwaves by a factor at least two »

£

« CO2 emissions are very likely to be a
necessary cause of the 2003 heatwave. »



Event attribution - summary
® « Have CO2 emissions caused the 2003 European heatwave? »

e The answer is greatly affected by:
— how one defines the event « 2003 European heatwave »,
— what is the temporal focus of the question,
— whether causality is understood in a necessary or sufficient sense.

Precise causal answers about climate events
critically require precise causal questions.



Which matters for event attribution: PN, PS or PNS ?

The ex post perspective (judge) :
— «who is to blame for the weather event that occurred ?»

— insurance, compensation, loss and damage mechanisms (e.g. Warsaw
2013)

— PN matters, not PS.

The ex ante perspective (policy maker)
— «what should be done today w.r.t. events that may occur in the future?»

— PS matters for assessing the cost of inaction, PN for assessing the
benefit of action.

The dissemination perspective (media, IPCC)
— PNS is a trade off between PN and PS.
— good candidate for a single metric as it avoids explaining the distinction.

‘ PN, PS and PNS all matter
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Statistical challenges

Making links with other communities (machine learning, data mining, ...)
Reframing FAR D&A questions and definitions by injecting error models
Investigating further regression models within the counterfactual theory
Finding ways to estimate non-sparse and big covariance matrices
Moving away from the Gaussian framework for extremes

Uncertainty of FAR as the ratio of two small probabilities

Adding more physics within the statistical model (data assimilation)
Taking advantage of fast algorithms

Add a Bayesian flavor to clarify assumptions

Improve climate models and their use (design experiments)
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Statistics and Earth sciences

“There is, today, always a
risk that specialists in two
subjects, using languages
full of words that are
unintelligible without study,
will grow up not only, without
knowledge of each other’s
work, but also will ignore the
problems which require
mutual assistance”.

Quiz

m (A) Gilbert Walker




Necessary and sufficient causation

e The judge perspective:

defendant A shot a gun at random in a seemingly desert place.

B stood one kilometer away and was unluckily hit right in between the
eyes.

PN ~1,PS ~ 0.
but A is an obvious culprit for the death of B from a legal perspective.
only PN matters here, PS does not.

e The policy-maker perspective:

what is the best policy to achieve a given objective ? (say, reducing
accidental gunshot mortality)

- prohibiting guns sales => PN = .., PS ~ 1

- restricting guns sales=>PN=..,PS=...

- better informing gun owners on safety => PN =..,PS= ...

both PN and PS matter to assess efficiency.
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