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In this talk, our goal is to provide a review on the most used statistical methods to detect

and attribute climate changes.  The usual statistical framework for detection and attribution

in  climatology consists  of  a  class  of  linear  regression  methods referred  to  as  optimal

fingerprinting. Three features of this regression problem are the high dimension (in space

and time) with non-sparse covariance matrices, the uniqueness of the observational vector

(there is only one Earth) and the limited number of numerical climate runs tainted by model

error.  These  constrains  lead  to  open  questions  concerning  the  choice  of  workable

hypothesis and their associated inference schemes. 
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Statistics and Earth sciences

“There is, today, always a

risk that specialists in two

subjects, using languages

full of words that are

unintelligible without study,

will grow up not only, without

knowledge of each other’s

work, but also will ignore the

problems which require

mutual assistance”.

QUIZ
(A) Gilbert Walker
(B) Ed Lorenz
(C) Guillaume Maze
(D) Rol Madden
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Spatial and temporal scales in weather and climate



“Darkness” by Lord Byron

“The bright sun was extinguish’d and the stars did wander darkling

in the eternal space, rayless, and pathless, and the icy earth swung

blind and blackening in the moonless air ; Morn came and went -

and came, and brought no day ...”

Written in 1816 on the shores of Lake Geneva in the midst of the year without
a summer.



Tambora 1815 (illustrations by G. & W.R. Harlin)

) Plutarch noticed that the eruption of Etna in 44 B.C. attenuated the sunlight and caused crops to shrivel up in ancient Rome.

) Benjamin Franklin suggested that the Laki eruption in Iceland in 1783 was related to the abnormally cold winter of 1783-1784.



Natural Climate Variability

Two important natural external forcing factors :
Solar irradiance variations (long-trend)
Explosive volcanism : Cooling effect on climate (short-lived)



Solar forcings

H.-S. Oh et al. / Journal of Atmospheric and Solar-Terrestrial Physics 65 (2003) 191–201 195

Table 1
Time series used in this study

Source Time span Comments

Solar forcing
Lean et al. (1995) 1610–1994 Solar irradiance (sunspot cycle amplitude based)
Hoyt and Schatten (1993) 1700–1992a Solar irradiance (sunspot cycle length based)
Beer et al. (1994) 1423–1985 Beryllium (10Be) from Greenland ice cores

Surface temperature
Mann et al. (1999) 1000–1980 Surface temperature: annual
Jones et al. (1998) 1000–1997 Surface temperature: April–September
Bri!a et al. (2001) 1000–1993 Surface temperature: April–September

aUpdated to 1997.
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Fig. 2. Solar variability (1600-present). The production rate (y-axis) for 10Be is reversed since it is inversely correlated with solar activity.

Mann et al. (1999) (subsequently referred to as MBH99)
extended previous work (Mann et al., 1998) where they
reconstructed Northern Hemisphere annual average temper-
atures using a set of early instrumental, as well as high reso-
lution proxy networks including data from tree-rings, corals,
ice cores and historical documents. Using multi-variate re-
gression, they calibrated the instrumental and proxy series
against the primary eigenvectors of the decomposed ob-
served climate of the 20th century. These patterns represent
the primary modes of climate variability. Assuming station-
arity in these patterns (i.e. teleconnections to mechanisms
of climate variability such as El Niño-Southern Oscillation
or the North Atlantic Oscillation), MBH99 then projected
temperature patterns for each year by summing over the re-
constructed histories of primary eigenvectors for each loca-
tion covered by the multi-variate reconstruction.

Jones et al. (1998) (subsequently referred to as JONES98)
based their reconstruction on a limited proxy set also
consisting of data from tree-ring, coral, ice core and his-
torical documents. They use 10 long series in the Northern
and 7 series from the Southern Hemisphere, although, as
in MBH99, not all are of the same length. This record
is speci"cally resolving the warm season climates in the
respective Hemispheres and not annual average. Here we
focus on the combined data from the Northern Hemisphere
(Hemispheric average), which covers the time from April
through September (see Fig. 3).
The third time series is based exclusively on tree-ring in-

formation. Bri!a et al. (2001) (BRIFFA01) use a large set
of tree ring chronologies from all over the Northern Hemi-
sphere to reconstruct growing season temperatures (roughly
April–September) in latitudes north of 20◦N, although



Antropogenic forcings

Turner, The Fighting Temeraire - tugged to her Last Berth to be broken up :
1838-39







Detection & Attribution

Detection
Demonstrating that climate or a system affected by climate has changed in
some defined statistical sense 1 without providing a reason for that change.
IPCC Good Practice Guidance Paper on Detection and Attribution, 2010

1. statistically usually, significant beyond what can be explained by internal (natural)
variability alone



Examples of a “Detection” statement

“Warming of the climate system is unequivocal, and since the

1950s, many of the observed changes are unprecedented over

decades to millennia. The atmosphere and ocean have warmed, the

amounts of snow and ice have diminished, sea level has risen, and

the concentrations of greenhouse gases have increased.”

IPCC-WG1-AR5 SPM



Summary for Policymakers

4

Figure SPM.1 |  (a) Observed global mean combined land and ocean surface temperature anomalies, from 1850 to 2012 from three data sets. Top panel: 
annual mean values. Bottom panel: decadal mean values including the estimate of uncertainty for one dataset (black). Anomalies are relative to the mean 
of 1961−1990. (b) Map of the observed surface temperature change from 1901 to 2012 derived from temperature trends determined by linear regression 
from one dataset (orange line in panel a). Trends have been calculated where data availability permits a robust estimate (i.e., only for grid boxes with 
greater than 70% complete records and more than 20% data availability in the first and last 10% of the time period). Other areas are white. Grid boxes 
where the trend is significant at the 10% level are indicated by a + sign. For a listing of the datasets and further technical details see the Technical Summary 
Supplementary Material. {Figures 2.19–2.21; Figure TS.2}
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Examples of a “Detection” statement

These figures and statements don’t say anything about the causes of the
observed warming.



Detection & Attribution

Attribution
Evaluating the relative contributions of multiple causal factors 2 to a change or
event with an assignment of statistical confidence.

Consequences
Need to assess wether the observed changes are

consistent with the expected responses to external forcings
inconsistent with alternative explanations

2. casual factors usually refer to external influences, which may be anthropogenic (GHGs, aero-
sols, ozone precursors, land use) and/or natural (volcanic eruptions, solar cycle modulations
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What do you need in D&A ?

Observations of climate indicators
Inhomogeneity in space and time (& reconstructions via proxies)

An estimate of external forcing
How external drivers of climate change have evolved before and during the
period under investigation – e.g., GHG and solar radiation

A quantitative physically-based understanding
How external forcing might affect these climate indicators. – normally
encapsulated in a physically-based model

An estimate of climate internal variability ⌃

Frequently derived from a physically-based model



Classical assumptions

Key forcings have been identified
Signals are additive
Noise is additive
The large-scale patterns of response are correctly simulated by climate
models
Statistical inference schemes are efficient



Examples of a “Attribution” statement (see F. Zwiers’ talk)

Attribution results 



Big data : statistical versus numerical models
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Two classical statistical approaches in D&A

1- Linear regressions

Non-optimal techniques
Ordinary and total least square regression
Error-in-Variables

2- FAR (Fraction of Attributable Risk)
The FAR = the relative ratio of two probabilities, p0 the probability of
exceeding a threshold in a “world that might have been (no antropogenic
forcings)” and p1 the probability of exceeding the same threshold in a “world
that it is”

FAR =
p1 � p0

p1
.

Example of an specific event, the 2003 summer heat wave over Europe.
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1- Linear regressions

Outline

A quick overview
Statistical issues
Current solutions



One huge problem (from a stat perspective)

There is only one Earth !
One unique observation, ie. a very long vector (space ⇤ time)

Methods based on learning from a large training set can’t be easily applied
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One key idea : use climate models to generate Earth’s avatars
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The basic regression scheme

),( natant xx !!
=XY
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Y = X"+ #

!"#$

%&!$'()*+,-$./($01$'+-)$2.-(-$3./0.1)-$+4$501(./$/(6/(--0+1$7)-$

Gabi Hegerl’s presentation at Geneva IPCC WG1/WG2 Meeting in Sept 2009



The basic Gaussian regression scheme

�̂ =
“
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T ⌃�1
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with under the Gaussian assumption with know ⌃

E(�̂) = � and Var(�̂) =
“

X

T ⌃�1
X

”�1

Practical questions

� = 0 + CI ?
� = 1 +CI ?
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An example

5-yr means. Figure 7 shows two-signal analysis results
for four extreme temperature indices when using 5-yr-
mean PI anomalies averaged over the globe and conti-
nental regions. Overall detection results for ANT are
found to resemble those based on decadal means, in-
dicating the robustness of our results to the dimension
increase. However, there are some notable differences.
NAT detection occurs less frequently and signal sepa-
ration between ANT and NAT becomes more limited.
Also, the residual consistency test fails more frequently
than in the low-dimensional case, reflecting larger dis-
crepancies between observed and simulated variability
at shorter time scales.
The results shown in Fig. 7 are based on ANT and

ALL signals estimated from all available models and
thus the estimated NAT signal may be confounded with
the influence of model difference (see Table 1). We
therefore also test the robustness of our detection re-
sults to this model difference by redoing our analysis
using the four models that provided both ANT and
ALL runs [CCSM3, ECHAM5/MPI-OM, ECHO-G, and
MIROC3.2(medres); Table 1]. Figure 8 shows two-signal

detection results for global- and continental-mean ex-
treme temperature PIs obtained when using the same
four models to estimate the ANT and NAT signals.
Compared with the full model case (Fig. 7), the main
results, including ANT signal detection and separation
from NAT, are not affected much by the different model
samples, suggesting insensitivity of our findings to the
model difference.
Signal separation is further described by examining

joint 90% uncertainty ranges for the ANT and NAT
scaling factors for the GLB domain (Fig. 9). It is shown
that the 90% uncertainty contours exclude the origin
(0, 0) for all temperature extremes, meaning that ANT
and NAT are jointly detected through two-way regres-
sion. However, when looking at one-dimensional 90%
ranges of the scaling factors, for cold extremes, only
ANT is detected and also model underestimation is
larger by a factor of 3–4. In warm extremes, both ANT
and NAT are detected and model underestimation is
not as large, implying better agreement with observa-
tions in warm seasons, which may be partly related to
the seasonality of volcanic cooling impact as discussed

FIG. 9. The joint 90% uncertainty range for the ANT and NAT scaling factors when temperature extreme indices are regressed onto
ANT (x axis) andNAT signals (y axis) simultaneously: (top) global-mean cold extremes (TNn, TXn, and TNn1TXn) and (bottom)warm
extremes (TNx, TXx, and TNx1 TXx). The error bars indicate one-dimensional 5%–95% ranges of the scaling factors for each forcing.
The dashed horizontal/vertical lines represent zero and unity.

1 OCTOBER 2013 M IN ET AL . 7443

5-yr means. Figure 7 shows two-signal analysis results
for four extreme temperature indices when using 5-yr-
mean PI anomalies averaged over the globe and conti-
nental regions. Overall detection results for ANT are
found to resemble those based on decadal means, in-
dicating the robustness of our results to the dimension
increase. However, there are some notable differences.
NAT detection occurs less frequently and signal sepa-
ration between ANT and NAT becomes more limited.
Also, the residual consistency test fails more frequently
than in the low-dimensional case, reflecting larger dis-
crepancies between observed and simulated variability
at shorter time scales.
The results shown in Fig. 7 are based on ANT and

ALL signals estimated from all available models and
thus the estimated NAT signal may be confounded with
the influence of model difference (see Table 1). We
therefore also test the robustness of our detection re-
sults to this model difference by redoing our analysis
using the four models that provided both ANT and
ALL runs [CCSM3, ECHAM5/MPI-OM, ECHO-G, and
MIROC3.2(medres); Table 1]. Figure 8 shows two-signal

detection results for global- and continental-mean ex-
treme temperature PIs obtained when using the same
four models to estimate the ANT and NAT signals.
Compared with the full model case (Fig. 7), the main
results, including ANT signal detection and separation
from NAT, are not affected much by the different model
samples, suggesting insensitivity of our findings to the
model difference.
Signal separation is further described by examining

joint 90% uncertainty ranges for the ANT and NAT
scaling factors for the GLB domain (Fig. 9). It is shown
that the 90% uncertainty contours exclude the origin
(0, 0) for all temperature extremes, meaning that ANT
and NAT are jointly detected through two-way regres-
sion. However, when looking at one-dimensional 90%
ranges of the scaling factors, for cold extremes, only
ANT is detected and also model underestimation is
larger by a factor of 3–4. In warm extremes, both ANT
and NAT are detected and model underestimation is
not as large, implying better agreement with observa-
tions in warm seasons, which may be partly related to
the seasonality of volcanic cooling impact as discussed

FIG. 9. The joint 90% uncertainty range for the ANT and NAT scaling factors when temperature extreme indices are regressed onto
ANT (x axis) andNAT signals (y axis) simultaneously: (top) global-mean cold extremes (TNn, TXn, and TNn1TXn) and (bottom)warm
extremes (TNx, TXx, and TNx1 TXx). The error bars indicate one-dimensional 5%–95% ranges of the scaling factors for each forcing.
The dashed horizontal/vertical lines represent zero and unity.

1 OCTOBER 2013 M IN ET AL . 7443

Joint 90% confidence region for ANT 
and NAT detection in TNn and TXx 

Min et al, 2013, Fig. 9 

Details: 1951-2000 TNn and TXx from HadEX (Alexander et al, 2006), decadal 
time averaging, “global” spatial averaging, CMIP3 models (ANT – 8 models, 27 
runs; ALL – 8 models, 26 runs; control – 10 models, 158 chunks) 

Source : Francis Zwiers



An example

Calculating attributed change 
Usual approach is to calculate trend in signal, 
multiply by scaling factor, and apply scaling factor 
uncertainty 
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Observed warming 
trend and 5-95% 
uncertainty range 
based on HadCRUT4 
(black). 

Attributed warming 
trends with assessed 
likely ranges (colours).  

IPCC WG1 AR5, Fig 10.5 

Source : Francis Zwiers



The basic Gaussian regression scheme
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with under the Gaussian assumption with know ⌃

E(�̂) = � and Var(�̂) =
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Practical questions

� = 0 + CI ?
� = 1 +CI ?

Problem done ? ... but

What’s about the dimension ?
What’s about the estimation of ⌃�1 ?
What’s about the numerical models X ?
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What’s about the dimension ?

Typical climate dataset (e.g. near-surface temperature)

Spatial dimension : 5o ⇥ 5o ⇡ 2600 grid-points
Temporal dimension : 50 - 100 ans (instrumental period)
Dimension of Y⇡ 105

Internal variability is described by ⌃ ⇡ 105 ⇥ 105

Warming : ⌃ is not sparse because of teleconnections

The estimation of ⌃ requires at least 105 realisations of ✏, i.e. 107 yrs of
control simulations (vs about ⇡ 104 yrs available).

Two classical options

Decrease the dimension of Y

Find accurate estimator of ⌃ in large dimension

Source : Aurélien Ribes
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What’s about the dimension ?

Typical climate dataset (e.g. near-surface temperature)

Spatial dimension : 5o ⇥ 5o ⇡ 2600 grid-points
Temporal dimension : 50 - 100 ans (instrumental period)
Dimension of Y⇡ 105

Internal variability is described by ⌃ ⇡ 105 ⇥ 105

Warming : ⌃ is not sparse because of teleconnections

The estimation of ⌃ requires at least 105 realisations of ✏, i.e. 107 yrs of
control simulations (vs about ⇡ 104 yrs available).

Two classical options

Decrease the dimension of Y

Find accurate estimator of ⌃ in large dimension

Source : Aurélien Ribes



Decreasing the dimension at the global scale

Quick solutions

Decadal means,
Projection on principal components,
Projection on spherical harmonics (e.g. truncation T4, ⇡ spatial scales >
5000 kms),
Use of simple climate indices (globale mean, land-sea contrast,
inter-hemispheric contrast, annual cycle, etc).

Source : Aurélien Ribes



Observations Y!
– Most studies of surface air temperature use  

•  decadal averages and some kind of spatial averaging 
–  To reduce noise from internal variability 
–  To reduce the dimension of Y 

– Recent studies (e.g., Jones et al, 2013) use 
•  Gridded (5°!5°) monthly mean surface temperature 

anomalies (e.g., HadCRUT4, Morice et al, 2012) 
•  Reduced to decadal means for 1901-1920, 1911-1920 

… 2001-2010 (11 decades) 
•  Often spatially reduced using a “T4” spherical harmonic 

decomposition � global array of 5°!5°decadal 
anomalies reduced to 25 coefficients 

•  Yn!1 therefore has dimension n=11!25=275 

Source : Francis Zwiers



What’s about the covariates X ?

Signals Xi, i=1, …, s!
– Number of signals s is small 

•  s=1 ! ALL 
•  s=2 ! ANT and NAT 
•  s=3 ! GHG, OANT and NAT 
•  s=4 ! … 

– Can’t separate signals that are “co-linear” 
– Signals estimated from either  

•  single model ensembles (size 3-10 in CMIP5) or  
•  multi-model ensembles (~172 ALL runs available in 

CMIP5 from 49 models, ~67 NAT runs from 21 models , 
~54 GHG runs from 20 models) 

– Process as we do the observations 
•  Transferred to observational grid, “masked”, centered, 

averaged using same criteria, etc. 

Source : Francis Zwiers



Still, we need to estimate the internal variability ⌃

Is it a big deal ?
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LETTERS
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Contribution of natural decadal variability to
global warming acceleration and hiatus
MasahiroWatanabe1*, Hideo Shiogama2, Hiroaki Tatebe3, Michiya Hayashi1, Masayoshi Ishii4

and Masahide Kimoto1

Reasons for the apparent pause in the rise of global-mean
surface air temperature (SAT) after the turn of the century
has been a mystery, undermining confidence in climate
projections1–3. Recent climate model simulations indicate this
warming hiatus originated from eastern equatorial Pacific
cooling4 associated with strengthening of trade winds5. Using
a climate model that overrides tropical wind stress anomalies
with observations for 1958–2012, we show that decadal-mean
anomalies of global SAT referenced to the period 1961–1990
are changed by 0.11, 0.13 and �0.11 �C in the 1980s, 1990s
and 2000s, respectively, without variation in human-induced
radiative forcing. Theyaccount for about47%,38%and27%of
the respective temperature change. The dominant wind stress
variability consistent with this warming/cooling represents
the deceleration/acceleration of the Pacific trade winds, which
can be robustly reproduced by atmospheric model simulations
forced by observed sea surface temperature excluding anthro-
pogenic warming components. Results indicate that inherent
decadal climate variability contributes considerably to the
observed global-mean SAT time series, but that its influence
on decadal-mean SAT has gradually decreased relative to the
rising anthropogenic warming signal.

The change of global-mean SAT during the first decade
of the twenty-first century was less than 0.05 �C, indicating a
considerably slower rate of warming than during the late twentieth
century3,6. The causes of this global warming hiatus, which are still
under debate, can be categorized into either internal or external
processes of the climate system. The principal candidates for
external drivers of the hiatus are the weakening of solar activity7
and increase in stratospheric aerosols8 plausibly associated with
accumulation from minor volcanic eruptions9. However, these
e�ects are quantitatively insu�cient to explain the warming hiatus.
Indeed, satellite measurements of the top of atmosphere (TOA)
radiative budgets for 2001–2010 indicate excess energy of about
0.5Wm�2 received by the Earth10, suggesting that the prime cause
of the hiatus is internal to the climate system.

Concurrently with the stall of surface warming, despite
the energy storage to the system, observational studies have
shown evidence that ocean interior warming has occurred
continuously11–15. This indicates the strengthening of global ocean
heat uptake16, which acts to increase the ocean temperature
below 700m. Whereas historical climate simulations reproduce
neither the warming hiatus nor the strengthening of ocean
heat uptake during the past decade3,16, multi-century control
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Figure 1 | Observed and simulated change in global-mean surface
temperature. Annual-mean time series relative to 1961–1990 mean derived
from observations (black), ASYM-H (red) and ASYM-C (blue)
experiments. Shading represents ranges of 95% confidence. Linear trends
for 1961–2012 and 2003–2012 are denoted at the top. Time series from the
combined CMIP3 and CMIP5 models is also shown by the grey curve, with
shading representing one standard deviation. Red and blue vertical dashed
lines show the occurrence of El Niño and La Niña events, respectively. Three
major volcanic eruptions (Agung, El Chichón and Pinatubo) are indicated by
green triangles.

simulations with prescribed pre-industrial radiative conditions
do reveal intermittent occurrences of pauses in warming and
intensification of heat uptake in phase with the Interdecadal Pacific
Oscillation (IPO), an inherent low-frequency variability of the
Pacific atmosphere–ocean system17,18.

Modelling evidence that supports the crucial role of the Pacific
atmosphere–ocean variability in the hiatus has been provided by
numerical experiments of a climate model in which sea surface
temperature (SST) was nudged to observations in the eastern
equatorial Pacific since 1861. An ensemble of the historical runs
reproduced the hiatus remarkably well4. Similarly, prescribing linear
trends in tropical wind stresses into a climate model simulated a
slowdown of surface warming as well as an increase in heat uptake
triggered by the pronounced acceleration of the Pacific tradewinds5.
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Still, we need to estimate the internal variability ⌃

Climate models can provide

[✏] = Control runs = a few simulations with constant (stationary) forcing
that are used to estimate the so-called internal variability ⌃

Ensembles runs = a few GCM simulations with the same forcing but
different initial conditions (give information on uncertainty associated
with model error)

Notations : [✏] ⇠ N(0, ⌃) (also denoted ⇡(✏)) with dimension n ⇥ r and [✏|y ]
for conditional pdfs

A fundamental statistical roadblock
The empirical estimator of the internal variability ⌃

Ŝ =
1
r

✏✏T

is unbiased but has a very poor estimator if r small
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Estimation of ⌃

The idea of regularisation

⌃̂ = (1� ↵)Ŝ + ↵�

with � is often chosen to be proportional to the identify matrix
Shrinkage estimator (LW04, Ledoit and Wolf, 2004)
D&A see RPT12 Ribes A., S. Planton, L. Terray
Link with James-Stein estimator
Link with Bayesian a priori



Statistics and Earth sciences

“There is, today, always a

risk that specialists in two

subjects, using languages

full of words that are

unintelligible without study,

will grow up not only, without

knowledge of each other’s

work, but also will ignore the

problems which require

mutual assistance”.

QUIZ
(A) Gilbert Walker

(B) Ed Lorenz

(C) Guillaume Maze

(D) Rol Madden

CONNECTION BETWEEN EL NIÑO AND STATISTICS 99

ily available. These equations still are popular (e.g.,
used in S-PLUS) for estimating partial autocorrela-
tions and, through a generalization (Whittle, 1963,
page 101), for fitting multiple AR processes.

But how many statisticians (or, for that matter, at-
mospheric scientists) are aware that the “Walker” in
both terms refers to the same individual and, more-
over, that these two appellations arose in conjunction
with the same research? The “Walker” in question is
none other than Sir Gilbert Thomas Walker (Figure 3).
While stationed in India as Director General of Obser-
vatories of that country’s meteorological department,
Walker became preoccupied with attempts to forecast
the monsoon rains, whose failure could result in wide-
spread famine (Davis, 2001). It was in the course of
this search for monsoon precursors that he identified
and named the “Southern Oscillation” (Walker, 1924).

At that time, the approach most prevalent in the
statistical analysis of weather variables was to search
for deterministic cycles through reliance on harmonic
analysis. Such cycles included those putatively as-

FIG. 3. Photograph of Sir Gilbert T. Walker (source: Royal
Society; Taylor, 1962).

sociated with sunspots, the hope being to provide a
method for long-range weather or climate forecast-
ing. Walker was quite skeptical of these attempts, es-
pecially given the lack of statistical rigor in identify-
ing any such periodicities. Eventually, he suggested the
alternative model of quasiperiodic behavior (Walker,
1925). Meanwhile, the prominent British statistician
George Udny Yule devised a second-order autoregres-
sive [AR(2)] process to demonstrate that the sunspot
time series was better modeled as a quasiperiodic phe-
nomenon than by deterministic cycles (Yule, 1927). To
determine whether the SO exhibits quasiperiodic be-
havior, Walker was compelled to extend Yule’s work
to a general pth-order autoregressive [AR(p)] process
(Walker, 1931).

The focus of the present paper is on the connec-
tion between the meteorological and statistical aspects
of Walker’s research. First some background about
Walker’s research on what he called “world weather”
is provided. Then the development of the Yule–Walker
equations is treated, including a reanalysis of the in-
dex of the SO originally modeled by Walker. Reaction
to his research, contemporaneously and in subsequent
years and both in meteorology and in statistics, is char-
acterized. For historical perspective, the present state
of stochastic and dynamic modeling of the SO is briefly
reviewed, examining the extent to which his work has
stood the test of time. Finally, the question of why his
work was so successful is considered in the discus-
sion section. For a more formal, scholarly treatment of
Walker’s work, in particular, or of the ENSO phenom-
enon, in general, see Diaz and Markgraf (1992, 2000)
and Philander (1990) (in addition to the references on
ENSO already cited in this section).

2. WALKER’S RESEARCH ON WORLD WEATHER

2.1 Training and Career

In grammar school, Sir Gilbert Thomas Walker, who
lived from 1868 to 1958, “showed an early interest in
arithmetic and mechanics” (Taylor, 1962, page 167).
After being educated under a mathematical scholar-
ship at Trinity College, University of Cambridge, he
remained there, assuming an academic career as Fel-
low of Trinity and Lecturer. Walker was a “mathemati-
cian to his finger-tips” (Simpson, 1959, page 67) and
was elected Fellow of the Royal Society in 1904 on the
strength of his research in pure and applied mathemat-
ics, including “original work in dynamics and electro-
magnetism before ever he turned his thoughts to me-
teorology” (Normand, 1958). Among his first papers
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Bayes’ formula = calculating conditional probability

[✓|y] / [y|✓]⇥ [✓]

1701( ?)- 1761 “An essay
towards solving a Problem in
the Doctrine of Chances”
(1764)



Recall of Gaussian basics

Let Z1 and Z2 a bivariate normal distribution with means µ1 and µ2 and a

covariance matrix
»
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Conditioning
Then, the conditional distribution of Z1 given Z2 is described by

[Z1|Z2 = z2] ⇠ N

h
µ1 + ⌃12⌃

�1
22 (z2 � µ2), ⌃11 � ⌃12⌃
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Estimating jointly � and ⌃Joint estimation of ! and " : Bayesian approach

a posteriori pdf of parameters ! and "

update term from observations y and $ (model likelihood)

a priori pdf of parameters ! and "

normalization factor

Source : Alexis Hannart



Estimating jointly � and ⌃

Choosing an a priori pdf for ! and "

a priori pdf of parameters ! and "

We use a uniform, improper prior for !:



Estimating jointly � and ⌃

Choosing an informative a priori pdf for " % regularizing "

We now open a parenthesis to show that the choice of an informative prior
 for " corresponds to a linear regularization.

Let us return to the standard covariance model:



Estimating jointly � and ⌃

Choosing an informative a priori pdf for " % regularizing "

Inverse Wishart Conjugate a priori pdf:

We reparameterize this conjugate prior in & and '



Estimating jointly � and ⌃

Choosing an informative a priori pdf for " % regularizing "

a priori mean and variance under the Inverse Wishart pdf:

a posteriori mean under the Inverse Wishart pdf :

Link with linear shrinkage towards identity (LW04): 

choose ' = () and select optimal values for ( and &.

(                 )



Estimating jointly � and ⌃

Choosing an a priori pdf for ! and "

a priori pdf of parameters ! and "

Returning to our model, we choose the Inverse Wishart 
Conjugate a priori pdf for "



Estimating jointly � and ⌃

Deriving the marginal a posteriori pdf, mean and variance of !

After a few calculations to integrate out ", we obtain:

And the following estimators of !, its variance, and ":



Estimating jointly � and ⌃

Deriving the marginal a posteriori pdf, mean and variance of !

The estimator of ! is the same as the one proposed by RPT12. 
This gives further theoretical grounding to this estimator. 

However, the estimator of its variance differs, as it includes a
scaling factor.

RPT12 : Ribes A., S. Planton, L. Terray



Estimating jointly � and ⌃

Simulation-based performance comparison

! Simulations:

" n = 100, p = 3, r = 10, 20, …, 100.

" ! = (1,…,1).

" ", x randomly generated from Inverse Wishart pdf and Gaussian pdf.

" y, ! randomly generated from model assumptions

! Performance metrics:

" empirical mse

" theoretical mse

" normalization to empirical mse with known ".



Estimating jointly � and ⌃

When & is known (here =0.6), the Bayesian estimator
outperforms both mle. The estimate of its variance is unbiased.



Estimating jointly � and ⌃

However, in practice, & is usually not known. The LW04
approach is able to yield an estimate only when ' = ().

! Ledoit and Wolf 2004, JMVA:
" optimal value of & for a target ' proportional to the identity
" a few extensions in very specific cases of ' (later on)
" no general expression available for ' unspecified



Estimating jointly � and ⌃

For a general ', we use instead the following estimate for &

! Hannart and Naveau 2013, submitted to JMVA:
" optimal value of & for any target ':



Estimating jointly � and ⌃

The obtained Bayesian estimator with estimated & now 
achieves the same performance as the Bayesian estimator with
known &.



What’s about the GCM ?(Source : IPCC AR5 WG1)

882

Chapter 10 Detection and Attribution of Climate Change: from Global to Regional

10

all these results support the AR4 assessment that GHG increases very 
likely caused most (>50%) of the observed GMST increase since the 
mid-20th century (Hegerl et al., 2007b). 

The results of multiple regression analyses of observed temperature 
changes onto the simulated responses to GHG, other anthropogen-
ic and natural forcings are shown in Figure 10.4 (Gillett et al., 2013;  
Jones et al., 2013; Ribes and Terray, 2013). The results, based on Had-
CRUT4 and a multi-model average, show robustly detected responses 
to GHG in the observational record whether data from 1861–2010 or 
only from 1951–2010 are analysed (Figure 10.4b). The advantage of 
analysing the longer period is that more information on observed and 
modelled changes is included, while a disadvantage is that it is difficult 
to validate climate models’ estimates of internal variability over such 
a long period. Individual model results exhibit considerable spread 
among scaling factors, with estimates of warming attributable to each 
forcing sensitive to the model used for the analsys (Figure 10.4; Gillett 

  -1    0    1    -0.5 0  0.5 1  1.5   -1    0    1    -0.5 0  0.5 1  1.5  
(°C per 60 years) (°C per 60 years)

BCC-CSM1-1

CanESM2

CNRM-CM5

CSIRO-Mk3-6-0

GISS-E2-H

GISS-E2-R

HadGEM2-ES

IPSL-CM5A-LR

NorESM1-M

multi

    

BCC-CSM1-1

CanESM2

CNRM-CM5

CSIRO-Mk3-6-0

GISS-E2-H

GISS-E2-R

HadGEM2-ES

IPSL-CM5A-LR

NorESM1-M

multi

1951-2010 trend Scaling factor 1951-2010 trend Scaling factor
(a) (b) (c) (d)

Scaling factor  Scaling factor  

et al., 2013; Jones et al., 2013; Ribes and Terray, 2013), the period over 
which the analysis is applied (Figure 10.4; Gillett et al., 2013; Jones et 
al., 2013), and the Empirical Orthogonal Function (EOF) truncation or 
degree of spatial filtering (Jones et al., 2013; Ribes and Terray, 2013). 
In some cases the GHG response is not detectable in regressions using 
individual models (Figure 10.4; Gillett et al., 2013; Jones et al., 2013; 
Ribes and Terray, 2013), or a residual test is failed (Gillett et al., 2013; 
Jones et al., 2013; Ribes and Terray, 2013), indicating a poor fit between 
the simulated response and observed changes. Such cases are proba-
bly due largely to errors in the spatio-temporal pattern of responses 
to forcings simulated in individual models (Ribes and Terray, 2013), 
although observational error and internal variability errors could also 
play a role. Nonetheless, analyses in which responses are averaged 
across multiple models generally show much less  sensitivity to period 
and EOF trucation (Gillett et al., 2013; Jones et al., 2013), and more 
consistent residuals (Gillett et al., 2013), which may be because model 
response errors are smaller in a multi-model mean. 

Figure 10.4 |  (a) Estimated contributions of greenhouse gas (GHG, green), other anthropogenic (yellow) and natural (blue) forcing components to observed global mean surface 
temperature (GMST) changes over the 1951–2010 period. (b) Corresponding scaling factors by which simulated responses to GHG (green), other anthropogenic (yellow) and 
natural forcings (blue) must be multiplied to obtain the best fit to Hadley Centre/Climatic Research Unit gridded surface temperature data set 4 (HadCRUT4; Morice et al., 2012) 
observations based on multiple regressions using response patterns from nine climate models individually and multi-model averages (multi). Results are shown based on an analysis 
over the 1901–2010 period (squares, Ribes and Terray, 2013), an analysis over the 1861–2010 period (triangles, Gillett et al., 2013) and an analysis over the 1951–2010 period 
(diamonds, Jones et al., 2013). (c, d) As for (a) and (b) but based on multiple regressions estimating the contributions of total anthropogenic forcings (brown) and natural forcings 
(blue) based on an analysis over 1901–2010 period (squares, Ribes and Terray, 2013) and an analysis over the 1861–2010 period (triangles, Gillett et al., 2013). Coloured bars 
show best estimates of the attributable trends (a and c) and 5 to 95% confidence ranges of scaling factors (b and d). Vertical dashed lines in (a) and (c) show the best estimate 
HadCRUT4 observed trend over the period concerned. Vertical dotted lines in (b) and d) denote a scaling factor of unity.



Internal variability within the GCM X

A new source of uncertainty
The matrix of actual regressors x⇤ of size n ⇥ p is not known with certainty
and the observed matrix x is assumed to be a noised version of it

x = x⇤ + ⌫

where [⌫
i

] ⇠ N(0, ⌦
i

)

A difficult problem to solve
Even with only one regressors p = 1, this is a non-parametric problem with n

unknowns and an unknown matrix ⌦ of size n ⇥ n
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Error-In-Variable model (EIV)

A new system with four unknowns �, x⇤, ⌦ and ⌃

⇢
y = x⇤� + ✏, with ✏ ⇠ N

n

(0, ⌃),
x = x⇤ + ⌫, with ⌫ ⇠ N

n

(0, ⌦),

A short bibliography

No known solution for the general case
Univariate EIV Adcock [1878] & Gillard [2010]
⌫ = 0 in the D&A, see Allen & Tett (1999)
⌦

i

= ⌃/n

r

Allen & Stott (2003)
⌦

i

= � + ⌃/n

r

Huntingford et al. (2006)
Covariances estimation (Ribes, A., S. Planton, and L. Terray (2012)),
classically a two-step plugging.
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Figure 1. (a–d) Illustration of the inference procedure for a simulation n = 275, p = 2, and ! = !0 and (e and f) per-
formance results. Data scatterplot (x1, y) (blue dots) and (x∗1 , y) (green circles) shown in Figure 1a. Contour plot of the
negative profile loglikelihood −!i(") and trajectory of "(t) showing convergence to the minimum shown in Figure 1b.
Plot of the negative profile loglikelihood −!i("1) shown in Figure 1c. Plot of the #2 probability level and confidence
interval shown in Figure 1d. Average mean squared error of the estimator obtained with our procedure (EIV, black line),
TLS (blue line), and OLS (red line) shown in Figure 1f. Frequency of the actual value of " falling within the 90% confidence
interval for our procedure, TLS, and OLS shown in Figure 1f.

data simulation assumptions are based on Ribes et al. [2012]. They aim at replicating realistically a global
data set of twentieth century temperature, as obtained after dimension reduction, and is described in
detail in Appendix C together with assumptions regarding !. Regarding "i , we assumed as in HSAL06 that
"i = !∕nr + # for all i with nr = 5 and # = !2$ representing the climate model error covariance—as a
default choice in the absence of a sound estimate of the covariance associated to model error. We ran the
inference procedure on ten samples of size N = 1000 corresponding to ten values of !2 ranging from 0 to
4 × !2

0 , where we use !2
0 = Tr(!)∕n as a reference error amplitude.

On average, the scheme (7) converged in 24 iterations which took 0.05 s using a desktop computer and
the algorithmic optimization described in Appendix D. Computing confidence intervals took an extra 0.1
s, which overall makes the procedure applicable identically for higher values of both p and n (within the
same order of magnitude). Figures 1a–1d show an illustration for a randomly selected simulation under
! = !0. The performance of the MLE "̂ was evaluated based on average mean squared error 1∕N

∑N
k=1 ‖"̂(k)−

"(k)‖2∕‖"(k)‖2, where k = 1, ...,N denotes the simulation index. The accuracy of the confidence interval
I0.9 was evaluated by comparing the empirical frequency 1∕N

∑N
k=1 1∕2

∑2
i=1 %"(k)i ∈I0.9

of each actual scalar

coefficient "(k)i falling into the interval, to its theoretical value 0.9. For the sake of comparison to existing pro-
cedures, both performance metrics were also systematically derived on each simulation by conducting an
OLS and a TLS inference. In the context of this test bed, it is clear that the latter two procedures do make an
incorrect assumption on "i—i.e., "i = 0 and "i = !∕nr , respectively—yet they provide a useful benchmark.

HANNART ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1265



EIV with known covariances (Source : Hannart, Ribes, Naveau, GRL, 2014))

EIV system

⇢
y = x⇤� + ✏, with ✏ ⇠ N

n

(0, ⌃),
x = x⇤ + ⌫, with ⌫ ⇠ N

n

(0, ⌦),

Likelihood function

Geophysical Research Letters 10.1002/2013GL058653

regression when p = 1 [Deming, 1943], that can be handled with the TLS algorithm when noise variances
are known and is the focus of many articles in the more problematic case where variances are known only
partially Gillard [2010]. While the model of Allen and Stott [2003] is not a “white” setup strictly speaking, it
can easily be connected to this case by “whitening” the data. In contrast, the general case of HSAL06 at stake
here is neither “whitenable” nor does it have any overlap with the traditional EIV setup of line independence
and column dependence. The method of Nounou et al. [2002]—as most EIV methods found in literature—is
hence not able to treat the inference problem at stake here and is simply not implementable in the first
place because of the mismatch in matrix sizes.

As a notable exception within the above-described EIV landscape, Schaffrin and Wieser [2008; hereinafter
SW08] treated in the context of an application in geodesy the more general case where both lines and
columns are simultaneously dependent. This contribution assumes that the dependence within the noise
matrix ! has a block structure described by the Kronecker product !⊗" where ! (respectively ") is a fixed
known p × p (respectively n × n) covariance matrix describing the dependence among columns (respec-
tively lines), which means that E("ij"kl) = !jl × "ik for any (i, j, k, l). Then, it proposes an inference procedure
based on minimizing a weighted squared error criterion, which coincides with the negative loglikelihood
of the model under a Gaussian setting. Minimization is performed by mean of an iterative algorithm coined
“weighted total least squares” (WTLS), obtained by (i) deriving the first-order nonlinear conditions in # and
#∗ (or, equivalently in the paper, in # and the residuals, under the model structural constraint), (ii) expressing
their solution as a function of itself (i.e., “fixed point” formulation), and (iii) iterating the fixed point equations
to convergence. Results show fast convergence toward the exact solution (when known).

By choosing ! = $p, the framework of SW08 does correspond to our model, provided all the covariance
matrices "i thereof are equal. Therefore, running the above algorithm would be a valid solution to solve our
model in this case. However, this assumption may be restrictive, and on the other hand, the algorithm does
not produce confidence intervals but merely a point estimate, an important shortcoming in a D & A context.
These two limitations motivates us to design a new procedure, which is adapted from the one of SW08 and
follows a similar approach.

3. Inference of the EIV Model

We wish to build and inference procedure for # , i.e., to derive a point estimate and confidence intervals that
depend only of the two known variables # and y. For this purpose, we follow a maximum likelihood esti-
mation (MLE) approach as is commonplace in EIV regression (e.g., SW08) and in optimal fingerprinting [e.g.,
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Next, we take advantage of equations (5) and (6) to implement the following iterative procedure:

⎧
⎪
⎨
⎪⎩

∙ initialization∶ !∗(0) = ! and !(0) = (!′"−1!)−1(!′"−1y).
∙ iterationstep1∶ x∗(t+1)

i = (#−1
i + !(t)2i "−1)−1(!(t)i "−1y(t)i +#−1

i xi)foreachi.
∙ iterationstep2∶ !(t+1) = (!∗(t+1)′"−1!∗(t+1))−1(!∗(t+1)′"−1y).
∙ stopping∶ repeat iterations until ‖!(t+1) − !(t)‖∕‖!(t)‖ < "0.

(7)

where "0 > 0 is the requested precision level. Scheme (7) yields a value (!̂, !̂∗) which is by construction
a fixed point of the function $(!, !∗) defined by equations (5) and (6) and thereby satisfies to the first-
order condition.

Defining the partial MLE as the value that maximizes the likelihood in one given variable when all others
are hold fixed, the right-hand terms of equations (5) and (6) also give the expressions of the so-called
partial MLEs !̂!∗ and !̂∗! . Scheme (7) may thus also be interpreted as a partial iterative maximization.
Such a procedure is not uncommon in statistics [e.g., Lauritzen, 1996], and it is similar to the widely used
expectation-maximization (EM) procedure [Dempster et al., 1977]. Under the EM procedure, !̂ would indeed
also be obtained by iterative maximization in ! (“M” step) but this maximization would be performed on a
likelihood function obtained by averaging over !∗ (“E” step), whereas in (7) it is obtained by maximizing over
!∗ (step 1). The partial iterative maximization approach is thus sometimes referred to as “hard EM” because
of this similarity. Finally, scheme (7) may also be paralleled with the Gibbs algorithm widely used in Bayesian
statistics Geman and Geman [1984], which similarly consists of a “partial iterative” simulation of ! and !∗
conditionally on one another. Rephrased in this context, scheme (7) basically retains at each step the most
likely value of the conditional distribution, as opposed to a random realization thereof.

With a point estimate !̂ in hand, we now turn to confidence intervals. A substantial benefit of working with
a MLE approach is that commonplace and widely applicable results are available to approximate confidence
intervals. In particular, if we define the profile likelihood for each individual coefficient !i as

!i(!i ∣ y, !) = max
(!−i ,!∗)

!(!, !∗ ∣ y, !)

where !−i = (!1, ..., !i−1, !i+1, ..., !p), then the corresponding profile likelihood ratio test statistic is asymp-
totically distributed according to the &2 distribution with 1◦ of freedom. This means that an approximate
(1 − ')% confidence region for !i is the set of values: {!i ∈ ℝ ∣ 2(!i(!̂i) − !i(!i)) ≤ c1−'} where c1−' is the
(1 − ')th quantile of the &2 distribution with 1◦ of freedom (see Venzon and Moolgavkar [1988] for more
details). The confidence interval is thus obtained by solving for !i(!i) = !i(!̂i) − c1−'∕2 in !i , which is done
here using the Newton-Raphson algorithm [Press et al., 2007]. The profile likelihood !i(!i ∣ y, !) is derived
every time needed by application of the same partial iterative maximization procedure, but with !i hold
constant. More specifically, step 1 is run identically, but step 2 is replaced by

!(t+1)
−i = (!∗(t+1)

−i

′"−1!∗(t+1)
−i )−1!∗(t+1)

−i

′"−1(y − !i!
∗(t+1)
i )

where !∗−i = (x∗1 , ..., x∗i−1, x∗i+1, ..., x∗p).

Finally, one important element in D & A studies consists in deriving a goodness-of-fit metric after the infer-
ence was performed, in order to check the consistency of the assumed model. A classic approach to such a
consistency test within the proposed EIV linear regression model would be for instance to use the weighted
sum of squared residuals obtained from the maximized loglikelihood !(!̂, !̂∗ ∣ y, !). This quantity conve-
niently follows a &2 distribution under the present assumption of known covariances; hence, a critical value
could straightforwardly be obtained for application of the test—in theory. However, in practice, covariances
are not known but estimated which has been shown to strongly influence the test’s distribution. How to
deal with the latter remains an open question at present (see Ribes et al. [2012] for a detailed explanation)
which is beyond the scope of this letter.

4. Illustration and Simulation Results

This section illustrates and evaluates the performance of our WTLS procedure by applying it to simulated
values of ! and y. The use of simulated rather than real data aims at verifying that our inference proce-
dure performs correctly, a goal which requires the actual values of ! and !∗ to be known. Our idealized
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are not known but estimated which has been shown to strongly influence the test’s distribution. How to
deal with the latter remains an open question at present (see Ribes et al. [2012] for a detailed explanation)
which is beyond the scope of this letter.
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Figure 1. (a–d) Illustration of the inference procedure for a simulation n = 275, p = 2, and ! = !0 and (e and f) per-
formance results. Data scatterplot (x1, y) (blue dots) and (x∗1 , y) (green circles) shown in Figure 1a. Contour plot of the
negative profile loglikelihood −!i(") and trajectory of "(t) showing convergence to the minimum shown in Figure 1b.
Plot of the negative profile loglikelihood −!i("1) shown in Figure 1c. Plot of the #2 probability level and confidence
interval shown in Figure 1d. Average mean squared error of the estimator obtained with our procedure (EIV, black line),
TLS (blue line), and OLS (red line) shown in Figure 1f. Frequency of the actual value of " falling within the 90% confidence
interval for our procedure, TLS, and OLS shown in Figure 1f.

data simulation assumptions are based on Ribes et al. [2012]. They aim at replicating realistically a global
data set of twentieth century temperature, as obtained after dimension reduction, and is described in
detail in Appendix C together with assumptions regarding !. Regarding "i , we assumed as in HSAL06 that
"i = !∕nr + # for all i with nr = 5 and # = !2$ representing the climate model error covariance—as a
default choice in the absence of a sound estimate of the covariance associated to model error. We ran the
inference procedure on ten samples of size N = 1000 corresponding to ten values of !2 ranging from 0 to
4 × !2

0 , where we use !2
0 = Tr(!)∕n as a reference error amplitude.

On average, the scheme (7) converged in 24 iterations which took 0.05 s using a desktop computer and
the algorithmic optimization described in Appendix D. Computing confidence intervals took an extra 0.1
s, which overall makes the procedure applicable identically for higher values of both p and n (within the
same order of magnitude). Figures 1a–1d show an illustration for a randomly selected simulation under
! = !0. The performance of the MLE "̂ was evaluated based on average mean squared error 1∕N

∑N
k=1 ‖"̂(k)−

"(k)‖2∕‖"(k)‖2, where k = 1, ...,N denotes the simulation index. The accuracy of the confidence interval
I0.9 was evaluated by comparing the empirical frequency 1∕N

∑N
k=1 1∕2

∑2
i=1 %"(k)i ∈I0.9

of each actual scalar

coefficient "(k)i falling into the interval, to its theoretical value 0.9. For the sake of comparison to existing pro-
cedures, both performance metrics were also systematically derived on each simulation by conducting an
OLS and a TLS inference. In the context of this test bed, it is clear that the latter two procedures do make an
incorrect assumption on "i—i.e., "i = 0 and "i = !∕nr , respectively—yet they provide a useful benchmark.
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detail in Appendix C together with assumptions regarding !. Regarding "i , we assumed as in HSAL06 that
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default choice in the absence of a sound estimate of the covariance associated to model error. We ran the
inference procedure on ten samples of size N = 1000 corresponding to ten values of !2 ranging from 0 to
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0 , where we use !2
0 = Tr(!)∕n as a reference error amplitude.

On average, the scheme (7) converged in 24 iterations which took 0.05 s using a desktop computer and
the algorithmic optimization described in Appendix D. Computing confidence intervals took an extra 0.1
s, which overall makes the procedure applicable identically for higher values of both p and n (within the
same order of magnitude). Figures 1a–1d show an illustration for a randomly selected simulation under
! = !0. The performance of the MLE "̂ was evaluated based on average mean squared error 1∕N
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OLS and a TLS inference. In the context of this test bed, it is clear that the latter two procedures do make an
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y = ỹ⇤ + ✏̃, with ✏ ⇠ N

n

(0, ⌃̃),
x̃ = x̃⇤ + ⌫̃, with ⌫ ⇠ N

n

(0, ⌦̃),

with
[x⇤|µ, �] ⇠ N

n

(µ, �) and [y⇤|µ, �] ⇠ N
n

(µ, �).

Goal : computing the Bayes factor
The posteriors odds ratio

B

M,M̃ =
[M|y]

[M̃ y]
=?

compares the models M and M̃



Detection &
Attribution

CLIMATE

Forcings

Observations
Control

runs

Ensemble
runs

STATISTICS
Linear

regression

Internal
vari-

ability

EIV



Back to D&A

Attribution
Evaluating the relative contributions of multiple causal factors 3 to a change or
event with an assignment of statistical confidence.

3. casual factors usually refer to external influences, which may be anthropogenic (GHGs, aero-
sols, ozone precursors, land use) and/or natural (volcanic eruptions, solar cycle modulations



Questions for D&A

! Is it possible to define «!causality!» more precisely ?

! Is it possible to quantify «!causal evidence!» more
rigorously ?

! Are the causal claims regarding the anthropogenic
influence on climate justified ?

! Can we formulate a unified «!causal evidencing
framework!» for climate science ?

Coming slides : Hannart, A., Pearl J. Otto F., P. Naveau and M. Ghil. (submitted). Counterfactual causality theory for the attribution of

weather and climate-related events



The cornerstone of causality: counterfactual definition

! D. Hume, An Enquiry Concerning Human
Understanding,1748
« We may define a cause to be an object
followed by another, where, if the first object
had not been, the second never had existed.!»

! D. K. Lewis, Counterfactuals, 1973
«!We think of a cause as something that makes
a difference, and the difference it makes must
be a difference from what would have
happened without it. Had it been absent, its
effects would have been absent as well.!»

D. Hume, 18th century

D. Lewis, 20th century



Consolidation of a standard causality theory (1980-1990)

! Common theoretical corpus on
causality

— what does «X causes Y» mean ?

— how does one evidence a causality
link from data ?

— philosophy, artificial intelligence,
statistics.

— statistics alone not enough - more
concepts needed.

! J. Pearl (2000), Causality: models,
reasoning and inference,
Cambridge University Press.

! Turing Award 2004.

!   Provides clear semantics and sound logic for causal reasoning.



Conditional probability at work

Overview of the theory - conditional independence

! Let X, Y, Z be random variables (e.g. binary).
— X: barometer
— Y: rain
— Z: road wet
— W: low pressure system



Dependence hierachyOverview of the theory - conditional independence

! Conditional independence factorization:

! Let X, Y, Z be random variables (e.g. binary).
— X: barometer
— Y: rain
— Z: road wet
— W: low pressure system



Oriented graphsOverview of the theory - oriented graphs

! Oriented graphs:
— visual representation of the conditional independence structure of a joint

distribution



Interventional probability

Overview of the theory - interventional probability

! Limitation of oriented graphs
— identifiability: several causal graphs are compatible with the same pdf

(and hence with the same observations).

— Need for disambiguation.

experimentation



Interventional probability

Overview of the theory - interventional probability

! New notion:
— intervention do(X=x)

— interventional probability P(Y l do(X=x)) = P(Yx)

the probability of rain knowing that the barometer is decreasing,
 in a non-experimental context in which the barometer evolution is left unconstrained

the probability of rain forcing the barometer to decrease,
in an experimental context in which the barometer is manipulated



Interventional probability

Overview of the theory - interventional probability

! Property:
— Exogeneity: X exogenous if X has no parents
— in this case:

! Property:
— Monotonicity: Y is monotonic wrt X iif Yx(!) is a monotonic function of x

for any realization ! of the world.

=



Fundamental difference : necessary and sufficient causation

Overview of the theory - necessary and sufficient causation

! Definitions:

— “X is a necessary cause of Y” means that X is required for Y to occur but
that other factors might be required as well.

— “X is a sufficient cause of Y” means that X always triggers Y but that Y
may also occur for other reasons without requiring X.

! Examples:
— clouds are a necessary cause of rain but not a sufficient one.
— rain is a sufficient cause for the road being wet, but not a necessary one.



Fundamental difference : necessary and sufficient causation

Overview of the theory - necessary and sufficient causation

! Definitions:

— Probability of necessary causality = PN = the probability that the event
Y would not have occurred in the absence of the event X given that both
events Y and X did in fact occur.

— Probability of sufficient causation = PS = the probability that Y would
have occurred in the presence of X, given that Y and X did not occur.

! Formalization:



Necessary and sufficient causation
Overview of the theory - necessary and sufficient causation

! How to calculate PN, PS and PNS ?
— difficult in general.
— closed formula under the assumption of monotonicity:

where:
p1 = P( Y=1 l X = 1 ) : factual probability of the event
p0 = P( Y=1 l X = 0 ) : counterfactual probability of the event
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Big data : statistical versus numerical models
Data Assimilation for Detection and Attribution
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Back to climate sciencesEvent attribution - methodological proposal

! Step 2 & 3: causal graph + monotonicity and exogeneity.



Event attribution - methodological proposal

! Step 2 & 3: causal graph.

factual run:
«!HIST!»



Event attribution - methodological proposal

! Step 2 & 3: causal graph.

counterfactual run
w.r.t. 

anthropogenic forcing:
«!NAT!»



Event attribution - methodological proposal

! Step 2 & 3: causal graph.

counterfactual run
w.r.t. 

natural forcing:
«!ANT!»



The 2003 European heatwave Stott P. A., Stone D. A., Allen M. R. (2004). Human contribution to the European heatwave of
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The 2003 European heatwave Stott P. A., Stone D. A., Allen M. R. (2004). Human contribution to the European heatwave of
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Revisiting the 2003 European heatwave with counterfactual theory

EVT extrapolation (GEV) based on HIST and NAT ensembles (Hadley
center model)

Event attribution - illustration on 2003 European heatwave

! Step 2: EVT extrapolation (GEV) based on HIST and NAT ensembles
(Hadley center model) => two distributions of Z.

p0 = 0.0008 (1/1250), p1 = 0.008 (1/125)



Event attribution - illustration on 2003 European heatwave

! Step 3:

p0 = 0.0008 (1/1250), p1 = 0.008 (1/125)

PN = 0.9, PS = 0.0072, PNS = 0.0072

« CO2 emissions are very likely to be a necessary cause, but are 
virtually certainly not a sufficient cause, of the 2003 heatwave. »

This highlights a distinctive feature of unusual events: several necessary causes 
may often be evidenced but rarely a sufficient one



Event attribution - illustration on 2003 European heatwave

! Stott et al. 2004:

« It is very likely (>90%) that CO2 emissions have increased the 
frequency of occurrence of 2003-like heatwaves by a factor at least two »

FAR distribution

« CO2 emissions are very likely to be a 
necessary cause of the 2003 heatwave. »

=



Event attribution - summary

! «!Have CO2 emissions caused the 2003 European heatwave?!»

! The answer is greatly affected by:

— how one defines the event «!2003 European heatwave!»,

— what is the temporal focus of the question,

— whether causality is understood in a necessary or sufficient sense.

Precise causal answers about climate events 
critically require precise causal questions.



Event attribution - necessary and sufficient causation

! Which matters for event attribution: PN, PS or PNS ?

! The  ex post perspective (judge) :
— «who is to blame for the weather event that occurred ?»

— insurance, compensation, loss and damage mechanisms (e.g. Warsaw
2013)

— PN matters, not PS.

! The ex ante perspective (policy maker)
— «what should be done today w.r.t. events that may occur in the future?»

— PS matters for assessing the cost of inaction, PN for assessing the
benefit of action.

! The dissemination perspective (media, IPCC)
— PNS is a trade off between PN and PS.

— good candidate for a single metric as it avoids explaining the distinction.

PN, PS and PNS all matter
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Statistical challenges

Making links with other communities (machine learning, data mining, ...)
Reframing FAR D&A questions and definitions by injecting error models
Investigating further regression models within the counterfactual theory
Finding ways to estimate non-sparse and big covariance matrices
Moving away from the Gaussian framework for extremes
Uncertainty of FAR as the ratio of two small probabilities
Adding more physics within the statistical model (data assimilation)
Taking advantage of fast algorithms
Add a Bayesian flavor to clarify assumptions
Improve climate models and their use (design experiments)
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Statistics and Earth sciences

“There is, today, always a

risk that specialists in two

subjects, using languages

full of words that are

unintelligible without study,

will grow up not only, without

knowledge of each other’s

work, but also will ignore the

problems which require

mutual assistance”.

QUIZ
(A) Gilbert Walker

CONNECTION BETWEEN EL NIÑO AND STATISTICS 99

ily available. These equations still are popular (e.g.,
used in S-PLUS) for estimating partial autocorrela-
tions and, through a generalization (Whittle, 1963,
page 101), for fitting multiple AR processes.

But how many statisticians (or, for that matter, at-
mospheric scientists) are aware that the “Walker” in
both terms refers to the same individual and, more-
over, that these two appellations arose in conjunction
with the same research? The “Walker” in question is
none other than Sir Gilbert Thomas Walker (Figure 3).
While stationed in India as Director General of Obser-
vatories of that country’s meteorological department,
Walker became preoccupied with attempts to forecast
the monsoon rains, whose failure could result in wide-
spread famine (Davis, 2001). It was in the course of
this search for monsoon precursors that he identified
and named the “Southern Oscillation” (Walker, 1924).

At that time, the approach most prevalent in the
statistical analysis of weather variables was to search
for deterministic cycles through reliance on harmonic
analysis. Such cycles included those putatively as-

FIG. 3. Photograph of Sir Gilbert T. Walker (source: Royal
Society; Taylor, 1962).

sociated with sunspots, the hope being to provide a
method for long-range weather or climate forecast-
ing. Walker was quite skeptical of these attempts, es-
pecially given the lack of statistical rigor in identify-
ing any such periodicities. Eventually, he suggested the
alternative model of quasiperiodic behavior (Walker,
1925). Meanwhile, the prominent British statistician
George Udny Yule devised a second-order autoregres-
sive [AR(2)] process to demonstrate that the sunspot
time series was better modeled as a quasiperiodic phe-
nomenon than by deterministic cycles (Yule, 1927). To
determine whether the SO exhibits quasiperiodic be-
havior, Walker was compelled to extend Yule’s work
to a general pth-order autoregressive [AR(p)] process
(Walker, 1931).

The focus of the present paper is on the connec-
tion between the meteorological and statistical aspects
of Walker’s research. First some background about
Walker’s research on what he called “world weather”
is provided. Then the development of the Yule–Walker
equations is treated, including a reanalysis of the in-
dex of the SO originally modeled by Walker. Reaction
to his research, contemporaneously and in subsequent
years and both in meteorology and in statistics, is char-
acterized. For historical perspective, the present state
of stochastic and dynamic modeling of the SO is briefly
reviewed, examining the extent to which his work has
stood the test of time. Finally, the question of why his
work was so successful is considered in the discus-
sion section. For a more formal, scholarly treatment of
Walker’s work, in particular, or of the ENSO phenom-
enon, in general, see Diaz and Markgraf (1992, 2000)
and Philander (1990) (in addition to the references on
ENSO already cited in this section).

2. WALKER’S RESEARCH ON WORLD WEATHER

2.1 Training and Career

In grammar school, Sir Gilbert Thomas Walker, who
lived from 1868 to 1958, “showed an early interest in
arithmetic and mechanics” (Taylor, 1962, page 167).
After being educated under a mathematical scholar-
ship at Trinity College, University of Cambridge, he
remained there, assuming an academic career as Fel-
low of Trinity and Lecturer. Walker was a “mathemati-
cian to his finger-tips” (Simpson, 1959, page 67) and
was elected Fellow of the Royal Society in 1904 on the
strength of his research in pure and applied mathemat-
ics, including “original work in dynamics and electro-
magnetism before ever he turned his thoughts to me-
teorology” (Normand, 1958). Among his first papers



Necessary and sufficient causation

Overview of the theory - necessary and sufficient causation

! The judge perspective:
— defendant A shot a gun at random in a seemingly desert place.
— B stood one kilometer away and was unluckily hit right in between the

eyes.
— PN ~ 1, PS ~ 0.
— but A is an obvious culprit for the death of B from a legal perspective.
— only PN matters here, PS does not.

! The policy-maker perspective:
— what is the best policy to achieve a given objective ? (say, reducing

accidental gunshot mortality)
! prohibiting guns sales => PN = .., PS  ~ 1
! restricting guns sales => PN = .., PS = …
! better informing gun owners on safety => PN = .., PS = …

— both PN and PS matter to assess efficiency.
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