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SVM and kernel machines: linear
and non-linear classification
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Kernel methods are a class of learning machine that has become an increasingly popular
tool for learning tasks such as pattern recognition, classification or novelty detection. This
popularity is mainly due to the success of the support vector machines (SVM), probably
the most popular kernel method, and to the fact that kernel machines can be used in many
applications  as  they  provide  a  bridge  from  linearity  to  non-linearity.  This  allows  the
generalization of many well known methods such as PCA or LDA to name a few. Other key
points related with kernel machines are convex optimization, duality and related sparcity.
The Objective of this course is to provide an overview of all  these issues related with
kernels  machines.  To  do  so,  we  will  introduce  kernel  machines  and  associated
mathematical foundations through practical implementation. All lectures will be devoted to
the writing of some Matlab functions that, putting all  together, will provide a toolbox for
learning with kernels.
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and Bob Williamson. In the last five years, he has published approximately thirty papers in
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Supervised classification as Learning from examples

The task, use longitude and latitude to predict: is it a boat or a house?

credit: A Gentle Introduction to Support Vector Machines in Biomedicine A. Statnikov, D. Hardin, I. Guyon and C. F. Aliferis
www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf

www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf


Supervised classification as Learning from examples

Using (red and green) labelled examples learn a (yellow) decision rule

credit: A Gentle Introduction to Support Vector Machines in Biomedicine A. Statnikov, D. Hardin, I. Guyon and C. F. Aliferis
www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf

www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf


Supervised classification as Learning from examples

Using (red and green) labelled examples...

credit: A Gentle Introduction to Support Vector Machines in Biomedicine A. Statnikov, D. Hardin, I. Guyon and C. F. Aliferis
www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf

www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf


Supervised classification as Learning from examples

Using (red and green) labelled examples... learn a (yellow) decision rule

credit: A Gentle Introduction to Support Vector Machines in Biomedicine A. Statnikov, D. Hardin, I. Guyon and C. F. Aliferis
www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf

www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf


Supervised classification as Learning from examples

Use the decision border to predict unseen objects label

credit: A Gentle Introduction to Support Vector Machines in Biomedicine A. Statnikov, D. Hardin, I. Guyon and C. F. Aliferis
www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf

www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf


Suppervised classification: the 2 steps
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A the learning algorithm
f the decision frontier

x

y

p

= f (x)

1 the border Learn(xi , yi , n training data) % A is SVM_learn
2

y

p

 Predict(unseen x , the border) % f is SVM_val
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"The algorithms for constructing the separating hyperplane considered above will
be utilized for developing a battery of programs for pattern recognition." in
Learning with kernels, 2002 - from V .Vapnik, 1982



Separating hyperplanes

Find a line to separate (classify) blue from red

D(x) = sign
�
v

>
x + a

�

the decision border:

v

>
x + a = 0

there are many solutions...
The problem is ill posed

How to choose a solution?
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Maximize our confidence = maximize the margin

the decision border: �(v, a) = {x 2 IRd

��
v

>
x + a = 0}

0

0

0

margin

maximize the margin

max
v,a

min
i2[1,n]

dist(x
i

,�(v, a))

| {z }
margin: m

Maximize the confidence

8
><

>:

max
v,a

m

with min
i=1,n

|v>x

i

+ a|
kvk � m

the problem is still ill posed

if (v, a) is a solution, 8 0 < k (kv, ka) is also a solution. . .



From the geometrical to the numerical margin

+1

�1

�1/|w|

1/|w|

{x | wTx = 0}

marge<− −>

x

w
T x

Valeur de la marge dans le cas monodimensionnel

Maximize the (geometrical) margin8
><

>:

max
v,a

m

with min
i=1,n

|v>x

i

+ a|
kvk � m

if the min is greater, everybody is greater
(y

i

2 {�1, 1})
8
><

>:

max
v,a

m

with
y
i

(v>x

i

+ a)
kvk � m, i = 1, n

change variable: w = v

mkvk and b = a

mkvk =) kwk = 1

m

8
><

>:

max
w,b

m

with y

i

(w>
x

i

+ b) � 1 ; i = 1, n
and m = 1

kwk

8
><

>:

min
w,b

kwk2
with y

i

(w>
x

i

+ b) � 1
i = 1, n
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"The algorithms for constructing the separating hyperplane considered above will
be utilized for developing a battery of programs for pattern recognition." in
Learning with kernels, 2002 - from V .Vapnik, 1982



Linear SVM: the problem

The maximal margin (=minimal norm)
canonical hyperplane

0

0

0

margin

Linear SVMs are the solution of the following problem (called primal)

Let {(x
i

, y
i

); i = 1 : n} be a set of labelled data with x 2 IRd , y
i

2 {1,�1}
A support vector machine (SVM) is a linear classifier associated with the
following decision function: D(x) = sign

�
w

>
x + b

�
where w 2 IRd and

b 2 IR a given thought the solution of the following problem:
(

min
w2IRd , b2IR

1

2

kwk2

with y

i

(w>
x

i

+ b) � 1 , i = 1, n

This is a quadratic program (QP):

(
min

z

1
2 z

>Az� d

>
z

with Bz  e



Support vector machines as a QP
The Standart QP formulation
(

min
w,b

1

2

kwk2
with y

i

(w>
x

i

+ b) � 1, i = 1, n
,

(
min

z2IRd+1

1

2

z

>
Az� d

>
z

with Bz  e

z = (w, b)>, d = (0, . . . , 0)>, A =


I 0
0 0

�
, B = �[diag(y)X , y] and

e = �(1, . . . , 1)>

Solve it using a standard QP solver such as (for instance)
% QUADPROG Quadratic programming.
% X = QUADPROG(H,f,A,b) attempts to solve the quadratic programming problem:
%
% min 0.5*x’*H*x + f’*x subject to: A*x <= b
% x
% so that the solution is in the range LB <= X <= UB

For more solvers (just to name a few) have a look at:
plato.asu.edu/sub/nlores.html#QP-problem

www.numerical.rl.ac.uk/people/nimg/qp/qp.html

plato.asu.edu/sub/nlores.html#QP-problem
www.numerical.rl.ac.uk/people/nimg/qp/qp.html
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First order optimality condition (1)

problem P =

8
><

>:

min
x2IRn

J(x)

with h
j

(x) = 0 j = 1, . . . , p
and g

i

(x)  0 i = 1, . . . , q

Definition: Karush, Kuhn and Tucker (KKT) conditions

stationarity rJ(x?) +
pX

j=1

�
j

rh

j

(x?) +
qX

i=1

µ
i

rg

i

(x?) = 0

primal admissibility h

j

(x?) = 0 j = 1, . . . , p
g

i

(x?)  0 i = 1, . . . , q
dual admissibility µ

i

� 0 i = 1, . . . , q
complementarity µ

i

g

i

(x?) = 0 i = 1, . . . , q

�
j

and µ
i

are called the Lagrange multipliers of problem P



First order optimality condition (2)

Theorem (12.1 Nocedal & Wright pp 321)

If a vector x? is a stationary point of problem P
Then there existsa Lagrange multipliers such that

�
x?, {�

j

}
j=1:p, {µi

}
i=1:q

�

fulfill KKT conditions
a
under some conditions e.g. linear independence constraint qualification

If the problem is convex, then a stationary point is the solution of the
problem

A quadratic program (QP) is convex when. . .

(QP)

(
min

z

1
2z

>Az� d

>
z

with Bz  e

. . . when matrix A is positive definite



KKT condition - Lagrangian (3)

problem P =

8
><

>:

min
x2IRn

J(x)

with h
j

(x) = 0 j = 1, . . . , p
and g

i

(x)  0 i = 1, . . . , q

Definition: Lagrangian

The lagrangian of problem P is the following function:

L(x,�, µ) = J(x) +
pX

j=1

�
j

h
j

(x) +
qX

i=1

µ
i

g
i

(x)

The importance of being a lagrangian

the stationarity condition can be written: rL(x?,�, µ) = 0

the lagrangian saddle point max
�,µ

min
x

L(x,�, µ)

Primal variables: x and dual variables �, µ (the Lagrange multipliers)



Duality – definitions (1)

Primal and (Lagrange) dual problems

P =

8
><

>:

min
x2IRn

J(x)

with h
j

(x) = 0 j = 1, p
and g

i

(x)  0 i = 1, q
D =

(
max

�2IRp,µ2IRq
Q(�, µ)

with µ
j

� 0 j = 1, q

Dual objective function:

Q(�, µ) = inf
x

L(x,�, µ)

= inf
x

J(x) +
pX

j=1

�
j

h
j

(x) +
qX

i=1

µ
i

g
i

(x)

Wolf dual problem

W =

8
>>>><

>>>>:

max
x,�2IRp,µ2IRq

L(x,�, µ)
with µ

j

� 0 j = 1, q

and rJ(x?) +
pX

j=1

�
j

rh
j

(x?) +
qX

i=1

µ
i

rg
i

(x?) = 0



Duality – theorems (2)

Theorem (12.12, 12.13 and 12.14 Nocedal & Wright pp 346)

If f , g and h are convex and continuously differentiablea, then the solution
of the dual problem is the same as the solution of the primal

a
under some conditions e.g. linear independence constraint qualification

(�?, µ?) = solution of problem D
x

? = arg min
x

L(x,�?, µ?)

Q(�?, µ?) = arg min
x

L(x,�?, µ?) = L(x?,�?, µ?)

= J(x?) + �?H(x?) + µ?G (x?) = J(x?)

and for any feasible point x

Q(�, µ)  J(x) ! 0  J(x)� Q(�, µ)

The duality gap is the difference between the primal and dual cost functions
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Figure from L. Bottou & C.J. Lin, Support vector machine solvers, in Large scale kernel machines, 2007.



Linear SVM dual formulation - The lagrangian

(
min
w,b

1

2

kwk2
with y

i

(w>
x

i

+ b) � 1 i = 1, n

Looking for the lagrangian saddle point max
↵

min
w,b

L(w, b,↵) with so called

lagrange multipliers ↵
i

� 0

L(w, b,↵) =
1
2
kwk2 �

nX

i=1

↵
i

�
y

i

(w>
x

i

+ b)� 1
�

↵
i

represents the influence of constraint thus the influence of the training
example (x

i

, y
i

)



Stationarity conditions

L(w, b,↵) =
1
2
kwk2 �

nX

i=1

↵
i

�
y
i

(w>
x

i

+ b)� 1
�

Computing the gradients:

8
>><

>>:

r
w

L(w, b,↵) = w �
nX

i=1

↵
i

y
i

x

i

@L(w, b,↵)
@b

=
P

n

i=1 ↵i

y
i

we have the following optimality conditions
8
>>>><

>>>>:

r
w

L(w, b,↵) = 0 ) w =
nX

i=1

↵
i

y

i

x

i

@L(w, b,↵)

@b

= 0 )
nX

i=1

↵
i

y

i

= 0



KKT conditions for SVM

stationarity w �
nX

i=1

↵
i

y
i

x

i

= 0 and
nX

i=1

↵
i

y
i

= 0

primal admissibility y
i

(w>
x

i

+ b) � 1 i = 1, . . . , n

dual admissibility ↵
i

� 0 i = 1, . . . , n

complementarity ↵
i

⇣
y
i

(w>
x

i

+ b)� 1
⌘
= 0 i = 1, . . . , n

The complementary condition split the data into two sets

A be the set of active constraints: usefull points

A = {i 2 [1, n]
�� y

i

(w⇤>
x

i

+ b⇤) = 1}

its complementary Ā useless points

if i /2 A,↵
i

= 0



The KKT conditions for SVM

The same KKT but using matrix notations and the active set A
stationarity w � X>D

y

↵ = 0

↵>y = 0

primal admissibility D
y

(Xw + b I1) � I1

dual admissibility ↵ � 0

complementarity D
y

(XAw + b I1A) = I1A
↵Ā = 0

Knowing A, the solution verifies the following linear system:
8
<

:

w �X>
AD

y

↵A = 0
�D

y

XAw �byA = �eA
�y

>
A↵A = 0

with D
y

= diag(yA), ↵A = ↵(A) , yA = y(A) et XA = X (XA; :).



The KKT conditions as a linear system
8
<

:

w �X>
AD

y

↵A = 0
�D

y

XAw �byA = �eA
�y

>
A↵A = 0

with D
y

= diag(yA), ↵A = ↵(A) , yA = y(A) et XA = X (XA; :).

=

I �X>
AD

y

0

�D
y

XA 0 �yA

0 �y

>
A 0

w

↵A

b

0

�eA

0

we can work on it to separate w from (↵A, b)



The SVM dual formulation
The SVM Wolfe dual

8
>>>>>><

>>>>>>:

max
w,b,↵

1
2kwk2 �

nX

i=1

↵
i

�
y
i

(w>
x

i

+ b)� 1
�

with ↵
i

� 0 i = 1, . . . , n

and w �
nX

i=1

↵
i

y
i

x

i

= 0 and
nX

i=1

↵
i

y
i

= 0

using the fact: w =
nX

i=1

↵
i

y

i

x

i

The SVM Wolfe dual without w and b
8
>>>>>><

>>>>>>:

max
↵

� 1
2

nX

i=1

nX

j=1

↵
j

↵
i

y
i

y
j

x

>
j

x

i

+
nX

i=1

↵
i

with ↵
i

� 0 i = 1, . . . , n

and
nX

i=1

↵
i

y
i

= 0



Linear SVM dual formulation
L(w, b,↵) =

1
2
kwk2 �

nX

i=1

↵
i

�
y
i

(w>
x

i

+ b)� 1
�

Optimality: w =
nX

i=1

↵
i

y
i

x

i

nX

i=1

↵
i

y
i

= 0

L(↵) = 1
2

nX

i=1

nX

j=1

↵
j

↵
i

y
i

y
j

x

>
j

x

i

| {z }
w

>
w

�P
n

i=1 ↵i

y
i

nX

j=1

↵
j

y
j

x

>
j

| {z }
w

>

x

i

� b
nX

i=1

↵
i

y
i

| {z }
=0

+
P

n

i=1 ↵i

= �1
2

nX

i=1

nX

j=1

↵
j

↵
i

y
i

y
j

x

>
j

x

i

+
nX

i=1

↵
i

Dual linear SVM is also a quadratic program

problem D

8
><

>:

min
↵2IRn

1
2↵

>G↵� e

>↵

with y

>↵ = 0
and 0  ↵

i

i = 1, n

with G a symmetric matrix n ⇥ n such that G
ij

= y
i

y
j

x

>
j

x

i



SVM primal vs. dual

Primal

8
><

>:

min
w2IRd ,b2IR

1

2

kwk2

with y

i

(w>
x

i

+ b) � 1
i = 1, n

d + 1 unknown
n constraints
classical QP
perfect when d << n

Dual

8
><

>:

min
↵2IRn

1

2

↵>
G↵� e

>↵

with y

>↵ = 0
and 0  ↵

i

i = 1, n

n unknown
G Gram matrix (pairwise
influence matrix)
n box constraints
easy to solve
to be used when d > n

f (x) =
dX

j=1

w

j

x

j

+ b =
nX

i=1

↵
i

y

i

(x>x

i

) + b



SVM primal vs. dual
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The non separable case: a bi criteria optimization problem

Modeling potential errors: introducing slack variables ⇠
i

(x
i

, y
i

)

⇢
no error: y

i

(w>
x

i

+ b) � 1) ⇠
i

= 0
error: ⇠

i

= 1� y
i

(w>
x

i

+ b) > 0
0

0

Slack j

8
>>>>>>><

>>>>>>>:

min
w,b,⇠

1
2
kwk2

min
w,b,⇠

C

p

nX

i=1

⇠p

i

with y

i

(w>
x

i

+ b) � 1� ⇠
i

⇠
i

� 0 i = 1, n

Our hope: almost all ⇠
i

= 0



The non separable case
Modeling potential errors: introducing slack variables ⇠

i

(x
i

, y
i

)

⇢
no error: y

i

(w>
x

i

+ b) � 1) ⇠
i

= 0
error: ⇠

i

= 1� y
i

(w>
x

i

+ b) > 0

Minimizing also the slack (the error), for a given C > 0
8
>>><

>>>:

min
w,b,⇠

1
2
kwk2 + C

p

nX

i=1

⇠p

i

with y

i

(w>
x

i

+ b) � 1� ⇠
i

i = 1, n
⇠
i

� 0 i = 1, n

Looking for the saddle point of the lagrangian with the Lagrange
multipliers ↵

i

� 0 and �
i

� 0

L(w, b,↵,�) =
1
2
kwk2 + C

p

nX

i=1

⇠p

i

�
nX

i=1

↵
i

�
y
i

(w>
x

i

+ b)� 1 + ⇠
i

��
nX

i=1

�
i

⇠
i



The KKT

L(w, b,↵,�) =
1
2
kwk2 + C

p

nX

i=1

⇠p

i

�
nX

i=1

↵
i

�
y
i

(w>
x

i

+ b)� 1 + ⇠
i

��
nX

i=1

�
i

⇠
i

stationarity w �
nX

i=1

↵
i

y
i

x

i

= 0 and
nX

i=1

↵
i

y
i

= 0

C � ↵
i

� �
i

= 0 i = 1, . . . , n

primal admissibility y
i

(w>
x

i

+ b) � 1 i = 1, . . . , n

⇠
i

� 0 i = 1, . . . , n

dual admissibility ↵
i

� 0 i = 1, . . . , n

�
i

� 0 i = 1, . . . , n

complementarity ↵
i

⇣
y
i

(w>
x

i

+ b)� 1 + ⇠
i

⌘
= 0 i = 1, . . . , n

�
i

⇠
i

= 0 i = 1, . . . , n

Let’s eliminate �!



KKT

stationarity w �
nX

i=1

↵
i

y
i

x

i

= 0 and
nX

i=1

↵
i

y
i

= 0

primal admissibility y
i

(w>
x

i

+ b) � 1 i = 1, . . . , n
⇠
i

� 0 i = 1, . . . , n;

dual admissibility ↵
i

� 0 i = 1, . . . , n
C � ↵

i

� 0 i = 1, . . . , n;

complementarity ↵
i

⇣
y
i

(w>
x

i

+ b)� 1 + ⇠
i

⌘
= 0 i = 1, . . . , n

(C � ↵
i

) ⇠
i

= 0 i = 1, . . . , n

sets I0 IA I
C

↵
i

0 0 < ↵ < C C
�

i

C C � ↵ 0
⇠
i

0 0 1� y
i

(w>
x

i

+ b)
y
i

(w>
x

i

+ b) > 1 y
i

(w>
x

i

+ b) = 1 y
i

(w>
x

i

+ b) < 1
useless usefull (support vec) suspicious



The importance of being support

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

.

data
point ↵

constraint
value set

x

i

useless ↵
i

= 0 y

i

�
w

>
x

i

+ b

�
> 1 I

0

x

i

support 0 < ↵
i

< C y

i

�
w

>
x

i

+ b

�
= 1 I↵

x

i

suspicious ↵
i

= C y

i

�
w

>
x

i

+ b

�
< 1 I

C

Table : When a data point is « support » it lies exactly on the margin.

here lies the efficiency of the algorithm (and its complexity)!

sparsity: ↵
i

= 0



Optimality conditions (p = 1)

L(w, b,↵,�) =
1
2
kwk2 + C

nX

i=1

⇠
i

�
nX

i=1

↵
i

�
y
i

(w>
x

i

+ b)� 1 + ⇠
i

��
nX

i=1

�
i

⇠
i

Computing the gradients:

8
>>>>>><

>>>>>>:

r
w

L(w, b,↵) = w �
nX

i=1

↵
i

y
i

x

i

@L(w, b,↵)
@b

=
nX

i=1

↵
i

y
i

r⇠iL(w, b,↵) = C � ↵
i

� �
i

no change for w and b

�
i

� 0 and C � ↵
i

� �
i

= 0 ) ↵
i

 C

The dual formulation:
8
><

>:

min
↵2IRn

1
2↵

>G↵� e

>↵

with y

>↵ = 0
and 0  ↵

i

 C i = 1, n



SVM primal vs. dual

Primal

8
>>><

>>>:

min
w,b,⇠2IRn

1

2

kwk2 + C

nX

i=1

⇠
i

with y

i

(w>
x

i

+ b) � 1� ⇠
i

⇠
i

� 0 i = 1, n

d + n + 1 unknown
2n constraints
classical QP
to be used when n is too
large to build G

Dual

8
><

>:

min
↵2IRn

1

2

↵>
G↵� e

>↵

with y

>↵ = 0
and 0  ↵

i

 C i = 1, n

n unknown
G Gram matrix (pairwise
influence matrix)
2n box constraints
easy to solve
to be used when n is not too
large



Eliminating the slack but not the possible mistakes
8
>>><

>>>:

min
w,b,⇠2IRn

1
2kwk2 + C

nX

i=1

⇠
i

with y
i

(w>
x

i

+ b) � 1� ⇠
i

⇠
i

� 0 i = 1, n

Introducing the hinge loss

⇠
i

= max
�
1� y

i

(w>
x

i

+ b), 0
�

min
w,b

1
2 kwk2 + C

nX

i=1

max
�
0, 1� y

i

(w>
x

i

+ b)
�

Back to d + 1 variables, but this is no longer an explicit QP



The hinge and other loss

Square hinge: (huber/hinge) and Lasso SVM

min
w,b

kwk1 + C
nX

i=1

max
�
1� y

i

(w>
x

i

+ b), 0
�
p

Penalized Logistic regression (Maxent)

min
w,b

kwk22 � C
nX

i=1

log
�
1 + exp�2yi (w

>
xi+b)

�

The exponential loss (commonly used in boosting)

min
w,b

kwk22 + C
nX

i=1

exp�yi (w
>

xi+b)

The sigmoid loss

min
w,b

kwk22 � C
nX

i=1

tanh
�
y
i

(w>
x

i

+ b)
�

−1 0 1
0

1

yf(x)

cl
as

si
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ss
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hinge
hinge2
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exponential
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Roadmap

1 Supervised classification and prediction

2 Linear SVM
Separating hyperplanes
Linear SVM: the problem
Optimization in 5 slides
Dual formulation of the linear SVM
The non separable case

3 Kernels

4 Kernelized support vector machine



Introducing non linearities through the feature map
SVM Val

f (x) =
dX

j=1

x
j

w
j

+ b =
nX

i=1

↵
i

(x>
i

x) + b

✓
t

1

t

2

◆
2 IR2

�(t) =

t

1

x

1

t

2

1

x

2

t

2

x

3

t

2

2

x

4

t

1

t

2

x

5

linear in x 2 IR5

quadratic in t 2 IR2

The feature map

� : IR2 �! IR5

t 7�! �(t) = x

x

>
i

x = �(t
i

)>�(t)
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Introducing non linearities through the feature map

A. Lorena & A. de Carvalho, Uma Introducão às Support Vector Machines, 2007
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Non linear case: dictionary vs. kernel

in the non linear case: use a dictionary of functions

�
j

(x), j = 1, p with possibly p =1

for instance polynomials, wavelets...

f (x) =
pX

j=1

w
j

�
j

(x) with w
j

=
nX

i=1

↵
i

y
i

�
j

(x
i

)

so that

f (x) =
nX

i=1

↵
i

y
i

pX

j=1

�
j

(x
i

)�
j

(x)

| {z }
k(xi ,x)

p � n so what since k(x
i

, x) =
P

p

j=1 �j

(x
i

)�
j

(x)
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closed form kernel: the quadratic kernel
The quadratic dictionary in IRd :

� : IRd ! IRp=1+d+ d (d+1)
2

s 7! � =
�
1, s1, s2, ..., sd , s2

1 , s
2
2 , ..., s

2
d

, ..., s
i

s
j

, ...
�

in this case
�(s)>�(t) = 1 + s1t1 + s2t2 + ...+ s

d

t
d

+ s2
1 t2

1 + ...+ s2
d

t2
d

+ ...+ s
i

s
j

t
i

t
j

+ ...

The quadratic kenrel: s, t 2 IRd , k(s, t) =
�
s

>t + 1
�2

= 1 + 2s>t +
�
s

>t
�2 computes

the dot product of the reweighted dictionary:

� : IRd ! IRp=1+d+ d (d+1)
2

s 7! � =
�
1,
p

2s1,
p

2s2, ...,
p

2s
d

, s2
1 , s

2
2 , ..., s

2
d

, ...,
p

2s
i

s
j

, ...
�

p = 1 + d + d(d+1)
2

multiplications vs. d + 1
use kernel to save computration
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kernel: features through pairwise comparisons

x �(x)

e.g. a text e.g. BOW

K

n examples

n
e
x
a
m

p
l
e
s

�

p features

n
e
x
a
m

p
l
e
s

k(x
i

, x
j

) =
pX

j=1

�
j

(x
i

)�
j

(x
j

)

K The matrix of pairwise comparizons (O(n2))
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Kenrel machine
kernel as a dictionary

f (x) =
nX

i=1

↵
i

k(x, x
i

)

↵
i

influence of example i depends on y

i

k(x, x
i

) the kernel do NOT depend on y

i

Definition (Kernel)

Let ⌦ be a non empty set (the input space).

A kernel is a function k from ⌦⇥ ⌦ onto IR. k : ⌦⇥ ⌦ 7�! IR
s, t �! k(s, t)

semi-parametric version: given the family q

j

(x), j = 1, p

f (x) =
nX

i=1

↵
i

k(x, x
i

)+
pX

j=1

�
j

q

j

(x)
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In the beginning was the kernel...

Definition (Kernel)

a function of two variable k from ⌦⇥ ⌦ to IR

Definition (Positive kernel)

A kernel k(s, t) on ⌦ is said to be positive
if it is symetric: k(s, t) = k(t, s)

an if for any finite positive interger n:

8{↵
i

}
i=1,n 2 IR, 8{x

i

}
i=1,n 2 ⌦,

nX

i=1

nX

j=1

↵
i

↵
j

k(x
i

, x
j

) � 0

it is strictly positive if for ↵
i

6= 0
nX

i=1

nX

j=1

↵
i

↵
j

k(x
i

, x
j

) > 0



Examples of positive kernels
the linear kernel: s, t 2 IRd , k(s, t) = s

>t

symetric: s

>t = t>s

positive:
nX

i=1

nX

j=1

↵i↵jk(xi , xj ) =
nX

i=1

nX

j=1

↵i↵jx
>
i xj

=

 nX

i=1

↵ixi

!>
0

@
nX

j=1

↵jxj

1

A =

�����

nX

i=1

↵ixi

�����

2

the product kernel: k(s, t) = g(s)g(t) for some g : IRd ! IR,

symetric by construction
positive:

nX

i=1

nX

j=1

↵i↵jk(xi , xj ) =
nX

i=1

nX

j=1

↵i↵jg(xi )g(xj )

=

 nX

i=1

↵ig(xi )

!0

@
nX

j=1

↵jg(xj )

1

A =

 nX

i=1

↵ig(xi )

!
2

k is positive , (its square root exists) , k(s, t) = h�
s

,�ti

J.P. Vert, 2006



Positive definite Kernel (PDK) algebra (closure)

if k

1

(s, t) and k

2

(s, t) are two positive kernels

DPK are a convex cone: 8a1 2 IR+ a1k1(s, t) + k2(s, t)

product kernel k1(s, t)k2(s, t)

proofs

by linearity:
nX

i=1

nX

j=1

↵i↵j
�
a

1

k

1

(i , j) + k

2

(i , j)
�
= a

1

nX

i=1

nX

j=1

↵i↵jk1

(i , j) +
nX

i=1

nX

j=1

↵i↵jk2

(i , j)

assuming 9 ` s.t. k

1

(s, t) =
X

`

 `(s) `(t)

nX

i=1

nX

j=1

↵i↵j k

1

(xi , xj )k2

(xi , xj ) =
nX

i=1

nX

j=1

↵i↵j
�X

`

 `(xi ) `(xj )k2

(xi , xj )
�

=
X

`

nX

i=1

nX

j=1

�
↵i `(xi )

� �
↵j `(xj )

�
k

2

(xi , xj )

N. Cristianini and J. Shawe Taylor, kernel methods for pattern analysis, 2004



Kernel engineering: building PDK
for any polynomial with positive coef. � from IR to IR

�
�
k(s, t)

�

if  is a function from IRd to IRd

k

�
 (s), (t)

�

if ' from IRd to IR+, is minimum in 0
k(s, t) = '(s + t)� '(s� t)

convolution of two positive kernels is a positive kernel
K

1

? K

2

Example : the Gaussian kernel is a PDK

exp(�ks� tk2) = exp(�ksk2 � ktk2 + 2s>t)
= exp(�ksk2) exp(�ktk2) exp(2s>t)

s

>t is a PDK and function exp as the limit of positive series expansion, so
exp(2s>t) is a PDK

exp(�ksk2) exp(�ktk2) is a PDK as a product kernel

the product of two PDK is a PDK
O. Catoni, master lecture, 2005



some examples of PD kernels...

type name k(s, t)

radial gaussian exp
⇣
� r

2

b

⌘
, r = ks � tk

radial laplacian exp(�r/b)

radial rationnal 1� r

2

r

2+b

radial loc. gauss. max
�
0, 1� r

3b

�
d exp(� r

2

b

)

non stat. �2 exp(�r/b), r =
P

k

(sk�tk )
2

sk+tk

projective polynomial (s>t)p

projective affine (s>t + b)p

projective cosine s

>
t/kskktk

projective correlation exp
⇣

s

>
t

kskktk � b

⌘

Most of the kernels depends on a quantity b called the bandwidth



Roadmap

1 Supervised classification and prediction

2 Linear SVM
Separating hyperplanes
Linear SVM: the problem
Optimization in 5 slides
Dual formulation of the linear SVM
The non separable case

3 Kernels

4 Kernelized support vector machine −1
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using relevant features...

a data point becomes a function x �! k(x, •)



Representer theorem for SVM
(

min
f ,b

1
2kf k2H

with y
i

�
f (x

i

) + b
� � 1

Lagrangian

L(f , b,↵) =
1
2
kf k2H �

nX

i=1

↵
i

�
y
i

(f (x
i

) + b)� 1
�

↵ � 0

optimility condition: r
f

L(f , b,↵) = 0, f (x) =
nX

i=1

↵
i

y
i

k(x
i

, x)

Eliminate f from L:

8
>>>><

>>>>:

kf k2H =
nX

i=1

nX

j=1

↵
i

↵
j

y
i

y
j

k(x
i

, x
j

)

nX

i=1

↵
i

y
i

f (x
i

) =
nX

i=1

nX

j=1

↵
i

↵
j

y
i

y
j

k(x
i

, x
j

)

Q(b,↵) = �1
2

nX

i=1

nX
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Dual formulation for SVM
the intermediate function

Q(b,↵) = �1
2

nX

i=1

nX

j=1

↵
i

↵
j

y
i

y
j

k(x
i

, x
j

)� b
� nX

i=1

↵
i

y
i

�
+

nX

i=1

↵
i

max
↵

min
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b can be seen as the Lagrange multiplier of the following (balanced)
constaint

P
n

i=1 ↵i

y
i

= 0 which is also the optimality KKT condition on b

Dual formulation
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↵
i

↵
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SVM dual formulation

Dual formulation8
>>>><

>>>>:

max
↵2IRn

� 1
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nX
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↵
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↵
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y
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i

, i = 1, n

The dual formulation gives a quadratic program (QP)(
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↵2IRn

1
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>G↵� I1>↵
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with the linear kernel f (x) =
P
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y
i

(x>x

i

) =
P

d

j=1 �j

x
j

when d is small wrt. n primal may be interesting.



the general case: C -SVM
Primal formulation

(P)

8
><

>:
min

f 2H,b,⇠2IRn
1
2kf k2 + C

p

nX

i=1

⇠p

i

such that y
i

�
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) + b
� � 1� ⇠

i

, ⇠
i

� 0, i = 1, n

C is the regularization path parameter (to be tuned)

p = 1 , L

1

SVM(
max
↵2IRn

� 1
2↵

>G↵+ ↵>I1
such that ↵>

y = 0 and 0  ↵
i

 C i = 1, n

p = 2, L

2

SVM (
max
↵2IRn

� 1
2↵

> �
G + 1

C

I
�
↵+ ↵>I1

such that ↵>
y = 0 and 0  ↵

i

i = 1, n

the regularization path: is the set of solutions ↵(C ) when C varies



Data groups: illustration
f (x) =

nX

i=1

↵ik(x, xi )

D(x) = sign

�
f (x) + b

�

useless data important data suspicious data
well classified support

↵ = 0 0 < ↵ < C ↵ = C

the regularization path: is the set of solutions ↵(C ) when C varies



The importance of being support

f (x) =
nX

i=1

↵
i

y
i

k(x
i

, x)

data
point ↵

constraint
value set

x

i

useless ↵
i

= 0 y

i

�
f (x

i

) + b

�
> 1 I

0

x

i

support 0 < ↵
i

< C y

i

�
f (x

i

) + b

�
= 1 I↵

x

i

suspicious ↵
i

= C y

i

�
f (x

i

) + b

�
< 1 I

C

Table : When a data point is « support » it lies exactly on the margin.

here lies the efficiency of the algorithm (and its complexity)!

sparsity: ↵
i

= 0



checker board

2 classes
500 examples
separable
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a separable case

n = 500 data points

n = 5000 data points
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Tuning C and � (the kernel width) : grid search
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Empirical complexity
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Conclusion

Learning as an optimization problem
I use CVX to prototype
I MonQP
I specific parallel and distributed solvers

Universal through Kernelization (dual trick)

Scalability
I Sparsity provides scalability
I Kernel implies "locality"
I Big data limitations: back to primal (an linear)
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