
Tuesday, September 9, 2014, 9:00 am - 10:30 am

SVM and kernel machines: linear
and non-linear classification

Prof. Stéphane Canu

Kernel methods are a class of learning machine that has become an increasingly popular
tool for learning tasks such as pattern recognition, classification or novelty detection. This
popularity is mainly due to the success of the support vector machines (SVM), probably
the most popular kernel method, and to the fact that kernel machines can be used in many
applications as they provide a bridge from linearity to non-linearity. This allows the
generalization of many well known methods such as PCA or LDA to name a few. Other key
points related with kernel machines are convex optimization, duality and related sparcity.
The Objective of this course is to provide an overview of all these issues related with
kernels machines. To do so, we will introduce kernel machines and associated
mathematical foundations through practical implementation. All lectures will be devoted to
the writing of some Matlab functions that, putting all together, will provide a toolbox for
learning with kernels.

About Stéphane Canu

Stéphane Canu is a Professor of the LITIS research laboratory and of the
information technology department, at the National institute of applied
science in Rouen (INSA). He has been the former executive director of the
LITIS, an information technology research laboratory in Normandy (150
researcher) form 2005 to 2012. He received a Ph.D. degree in System
Command from Comiègne University of Technology in 1986. He joined the

faculty department of Computer Science at Compiegne University of Technology in 1987.
He received the French habilitation degree from Paris 6 University. In 1997, he joined the
Rouen Applied Sciences National Institute (INSA) as a full professor, where he created the
information engineering department. He has been the dean of this department until 2002
when he was named director of the computing service and facilities unit. In 2004 he join for
one sabbatical year the machine learning group at ANU/NICTA (Canberra) with Alex Smola

Ocean's Big Data Mining, 2014
(Data mining in large sets of complex oceanic data: new challenges and solutions)

8-9 Sep 2014 Brest (France)

SUMMER SCHOOL #OBIDAM14 / 8-9 Sep 2014 Brest (France)
oceandatamining.sciencesconf.org

and Bob Williamson. In the last five years, he has published approximately thirty papers in
refereed conference proceedings or journals in the areas of theory, algorithms and
applications using kernel machines learning algorithm and other flexible regression
methods. His research interests includes kernels and frames machines, regularization,
machine learning applied to signal processing, pattern classification, matrix factorization
for recommender systems and learning for context aware applications.

SVM and Kernel machine
linear and non-linear classification

Stéphane Canu

stephane.canu@litislab.eu

Ocean’s Big Data Mining, 2014

September 9, 2014

Road map

1 Supervised classification and prediction

2 Linear SVM
Separating hyperplanes
Linear SVM: the problem
Optimization in 5 slides
Dual formulation of the linear SVM
The non separable case

3 Kernels

4 Kernelized support vector machine

Supervised classification as Learning from examples

The task, use longitude and latitude to predict: is it a boat or a house?

credit: A Gentle Introduction to Support Vector Machines in Biomedicine A. Statnikov, D. Hardin, I. Guyon and C. F. Aliferis
www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf

www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf

Supervised classification as Learning from examples

Using (red and green) labelled examples learn a (yellow) decision rule

credit: A Gentle Introduction to Support Vector Machines in Biomedicine A. Statnikov, D. Hardin, I. Guyon and C. F. Aliferis
www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf

www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf

Supervised classification as Learning from examples

Using (red and green) labelled examples...

credit: A Gentle Introduction to Support Vector Machines in Biomedicine A. Statnikov, D. Hardin, I. Guyon and C. F. Aliferis
www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf

www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf

Supervised classification as Learning from examples

Using (red and green) labelled examples... learn a (yellow) decision rule

credit: A Gentle Introduction to Support Vector Machines in Biomedicine A. Statnikov, D. Hardin, I. Guyon and C. F. Aliferis
www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf

www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf

Supervised classification as Learning from examples

Use the decision border to predict unseen objects label

credit: A Gentle Introduction to Support Vector Machines in Biomedicine A. Statnikov, D. Hardin, I. Guyon and C. F. Aliferis
www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf

www.nyuinformatics.org/downloads/supplements/SVM_Tutorial_2010/Final_WB.pdf

Suppervised classification: the 2 steps

{x
i

, y
i

}{x
i

, y
i

}
i = 1, n

A the learning algorithm
f the decision frontier

x

y

p

= f (x)

1 the border Learn(xi , yi , n training data) % A is SVM_learn
2

y

p

 Predict(unseen x , the border) % f is SVM_val

Unavaliable speakers (more qualified in Environmental Data Learning ;)

.

.

Mikhail Kanevski S. Thiria & F. Badran .
UNIL geostat UPMC Locean .

less "ocean", but...

more maths, more optimization, more matlab...

Unavaliable speakers (more qualified in Environmental Data Learning ;)

.

.

Mikhail Kanevski S. Thiria & F. Badran .
UNIL geostat UPMC Locean .

less "ocean", but...

more maths, more optimization, more matlab...

Road map

1 Supervised classification and prediction

2 Linear SVM
Separating hyperplanes
Linear SVM: the problem
Optimization in 5 slides
Dual formulation of the linear SVM
The non separable case

3 Kernels

4 Kernelized support vector machine

0

0

0

margin

"The algorithms for constructing the separating hyperplane considered above will
be utilized for developing a battery of programs for pattern recognition." in
Learning with kernels, 2002 - from V .Vapnik, 1982

Separating hyperplanes

Find a line to separate (classify) blue from red

D(x) = sign
�
v

>
x + a

�

the decision border:

v

>
x + a = 0

there are many solutions...
The problem is ill posed

How to choose a solution?

Separating hyperplanes

Find a line to separate (classify) blue from red

D(x) = sign
�
v

>
x + a

�

the decision border:

v

>
x + a = 0

there are many solutions...
The problem is ill posed

How to choose a solution?

Separating hyperplanes

Find a line to separate (classify) blue from red

D(x) = sign
�
v

>
x + a

�

the decision border:

v

>
x + a = 0

there are many solutions...
The problem is ill posed

How to choose a solution?

Maximize our confidence = maximize the margin

the decision border: �(v, a) = {x 2 IRd

��
v

>
x + a = 0}

0

0

0

margin

maximize the margin

max
v,a

min
i2[1,n]

dist(x
i

,�(v, a))

| {z }
margin: m

Maximize the confidence

8
><

>:

max
v,a

m

with min
i=1,n

|v>x

i

+ a|
kvk � m

the problem is still ill posed

if (v, a) is a solution, 8 0 < k (kv, ka) is also a solution. . .

From the geometrical to the numerical margin

+1

�1

�1/|w|

1/|w|

{x | wTx = 0}

marge<− −>

x

w
T x

Valeur de la marge dans le cas monodimensionnel

Maximize the (geometrical) margin8
><

>:

max
v,a

m

with min
i=1,n

|v>x

i

+ a|
kvk � m

if the min is greater, everybody is greater
(y

i

2 {�1, 1})
8
><

>:

max
v,a

m

with
y
i

(v>x

i

+ a)
kvk � m, i = 1, n

change variable: w = v

mkvk and b = a

mkvk =) kwk = 1

m

8
><

>:

max
w,b

m

with y

i

(w>
x

i

+ b) � 1 ; i = 1, n
and m = 1

kwk

8
><

>:

min
w,b

kwk2
with y

i

(w>
x

i

+ b) � 1
i = 1, n

From the geometrical to the numerical margin

+1

�1

�1/|w|

1/|w|

{x | wTx = 0}

marge<− −>

x

w
T x

Valeur de la marge dans le cas monodimensionnel

Maximize the (geometrical) margin8
><

>:

max
v,a

m

with min
i=1,n

|v>x

i

+ a|
kvk � m

if the min is greater, everybody is greater
(y

i

2 {�1, 1})
8
><

>:

max
v,a

m

with
y
i

(v>x

i

+ a)
kvk � m, i = 1, n

change variable: w = v

mkvk and b = a

mkvk =) kwk = 1

m

8
><

>:

max
w,b

m

with y

i

(w>
x

i

+ b) � 1 ; i = 1, n
and m = 1

kwk

8
><

>:

min
w,b

kwk2
with y

i

(w>
x

i

+ b) � 1
i = 1, n

Road map

1 Supervised classification and prediction

2 Linear SVM
Separating hyperplanes
Linear SVM: the problem
Optimization in 5 slides
Dual formulation of the linear SVM
The non separable case

3 Kernels

4 Kernelized support vector machine

0

0

0

margin

"The algorithms for constructing the separating hyperplane considered above will
be utilized for developing a battery of programs for pattern recognition." in
Learning with kernels, 2002 - from V .Vapnik, 1982

Linear SVM: the problem

The maximal margin (=minimal norm)
canonical hyperplane

0

0

0

margin

Linear SVMs are the solution of the following problem (called primal)

Let {(x
i

, y
i

); i = 1 : n} be a set of labelled data with x 2 IRd , y
i

2 {1,�1}
A support vector machine (SVM) is a linear classifier associated with the
following decision function: D(x) = sign

�
w

>
x + b

�
where w 2 IRd and

b 2 IR a given thought the solution of the following problem:
(

min
w2IRd , b2IR

1

2

kwk2

with y

i

(w>
x

i

+ b) � 1 , i = 1, n

This is a quadratic program (QP):

(
min

z

1
2 z

>Az� d

>
z

with Bz e

Support vector machines as a QP
The Standart QP formulation
(

min
w,b

1

2

kwk2
with y

i

(w>
x

i

+ b) � 1, i = 1, n
,

(
min

z2IRd+1

1

2

z

>
Az� d

>
z

with Bz e

z = (w, b)>, d = (0, . . . , 0)>, A =

I 0
0 0

�
, B = �[diag(y)X , y] and

e = �(1, . . . , 1)>

Solve it using a standard QP solver such as (for instance)
% QUADPROG Quadratic programming.
% X = QUADPROG(H,f,A,b) attempts to solve the quadratic programming problem:
%
% min 0.5*x’*H*x + f’*x subject to: A*x <= b
% x
% so that the solution is in the range LB <= X <= UB

For more solvers (just to name a few) have a look at:
plato.asu.edu/sub/nlores.html#QP-problem

www.numerical.rl.ac.uk/people/nimg/qp/qp.html

plato.asu.edu/sub/nlores.html#QP-problem
www.numerical.rl.ac.uk/people/nimg/qp/qp.html

Road map

1 Supervised classification and prediction

2 Linear SVM
Separating hyperplanes
Linear SVM: the problem
Optimization in 5 slides
Dual formulation of the linear SVM
The non separable case

3 Kernels

4 Kernelized support vector machine

First order optimality condition (1)

problem P =

8
><

>:

min
x2IRn

J(x)

with h
j

(x) = 0 j = 1, . . . , p
and g

i

(x) 0 i = 1, . . . , q

Definition: Karush, Kuhn and Tucker (KKT) conditions

stationarity rJ(x?) +
pX

j=1

�
j

rh

j

(x?) +
qX

i=1

µ
i

rg

i

(x?) = 0

primal admissibility h

j

(x?) = 0 j = 1, . . . , p
g

i

(x?) 0 i = 1, . . . , q
dual admissibility µ

i

� 0 i = 1, . . . , q
complementarity µ

i

g

i

(x?) = 0 i = 1, . . . , q

�
j

and µ
i

are called the Lagrange multipliers of problem P

First order optimality condition (2)

Theorem (12.1 Nocedal & Wright pp 321)

If a vector x? is a stationary point of problem P
Then there existsa Lagrange multipliers such that

�
x?, {�

j

}
j=1:p, {µi

}
i=1:q

�

fulfill KKT conditions
a
under some conditions e.g. linear independence constraint qualification

If the problem is convex, then a stationary point is the solution of the
problem

A quadratic program (QP) is convex when. . .

(QP)

(
min

z

1
2z

>Az� d

>
z

with Bz e

. . . when matrix A is positive definite

KKT condition - Lagrangian (3)

problem P =

8
><

>:

min
x2IRn

J(x)

with h
j

(x) = 0 j = 1, . . . , p
and g

i

(x) 0 i = 1, . . . , q

Definition: Lagrangian

The lagrangian of problem P is the following function:

L(x,�, µ) = J(x) +
pX

j=1

�
j

h
j

(x) +
qX

i=1

µ
i

g
i

(x)

The importance of being a lagrangian

the stationarity condition can be written: rL(x?,�, µ) = 0

the lagrangian saddle point max
�,µ

min
x

L(x,�, µ)

Primal variables: x and dual variables �, µ (the Lagrange multipliers)

Duality – definitions (1)

Primal and (Lagrange) dual problems

P =

8
><

>:

min
x2IRn

J(x)

with h
j

(x) = 0 j = 1, p
and g

i

(x) 0 i = 1, q
D =

(
max

�2IRp,µ2IRq
Q(�, µ)

with µ
j

� 0 j = 1, q

Dual objective function:

Q(�, µ) = inf
x

L(x,�, µ)

= inf
x

J(x) +
pX

j=1

�
j

h
j

(x) +
qX

i=1

µ
i

g
i

(x)

Wolf dual problem

W =

8
>>>><

>>>>:

max
x,�2IRp,µ2IRq

L(x,�, µ)
with µ

j

� 0 j = 1, q

and rJ(x?) +
pX

j=1

�
j

rh
j

(x?) +
qX

i=1

µ
i

rg
i

(x?) = 0

Duality – theorems (2)

Theorem (12.12, 12.13 and 12.14 Nocedal & Wright pp 346)

If f , g and h are convex and continuously differentiablea, then the solution
of the dual problem is the same as the solution of the primal

a
under some conditions e.g. linear independence constraint qualification

(�?, µ?) = solution of problem D
x

? = arg min
x

L(x,�?, µ?)

Q(�?, µ?) = arg min
x

L(x,�?, µ?) = L(x?,�?, µ?)

= J(x?) + �?H(x?) + µ?G (x?) = J(x?)

and for any feasible point x

Q(�, µ) J(x) ! 0 J(x)� Q(�, µ)

The duality gap is the difference between the primal and dual cost functions

Road map

1 Supervised classification and prediction

2 Linear SVM
Separating hyperplanes
Linear SVM: the problem
Optimization in 5 slides
Dual formulation of the linear SVM
The non separable case

3 Kernels

4 Kernelized support vector machine

Figure from L. Bottou & C.J. Lin, Support vector machine solvers, in Large scale kernel machines, 2007.

Linear SVM dual formulation - The lagrangian

(
min
w,b

1

2

kwk2
with y

i

(w>
x

i

+ b) � 1 i = 1, n

Looking for the lagrangian saddle point max
↵

min
w,b

L(w, b,↵) with so called

lagrange multipliers ↵
i

� 0

L(w, b,↵) =
1
2
kwk2 �

nX

i=1

↵
i

�
y

i

(w>
x

i

+ b)� 1
�

↵
i

represents the influence of constraint thus the influence of the training
example (x

i

, y
i

)

Stationarity conditions

L(w, b,↵) =
1
2
kwk2 �

nX

i=1

↵
i

�
y
i

(w>
x

i

+ b)� 1
�

Computing the gradients:

8
>><

>>:

r
w

L(w, b,↵) = w �
nX

i=1

↵
i

y
i

x

i

@L(w, b,↵)
@b

=
P

n

i=1 ↵i

y
i

we have the following optimality conditions
8
>>>><

>>>>:

r
w

L(w, b,↵) = 0) w =
nX

i=1

↵
i

y

i

x

i

@L(w, b,↵)

@b

= 0)
nX

i=1

↵
i

y

i

= 0

KKT conditions for SVM

stationarity w �
nX

i=1

↵
i

y
i

x

i

= 0 and
nX

i=1

↵
i

y
i

= 0

primal admissibility y
i

(w>
x

i

+ b) � 1 i = 1, . . . , n

dual admissibility ↵
i

� 0 i = 1, . . . , n

complementarity ↵
i

⇣
y
i

(w>
x

i

+ b)� 1
⌘
= 0 i = 1, . . . , n

The complementary condition split the data into two sets

A be the set of active constraints: usefull points

A = {i 2 [1, n]
�� y

i

(w⇤>
x

i

+ b⇤) = 1}

its complementary Ā useless points

if i /2 A,↵
i

= 0

The KKT conditions for SVM

The same KKT but using matrix notations and the active set A
stationarity w � X>D

y

↵ = 0

↵>y = 0

primal admissibility D
y

(Xw + b I1) � I1

dual admissibility ↵ � 0

complementarity D
y

(XAw + b I1A) = I1A
↵Ā = 0

Knowing A, the solution verifies the following linear system:
8
<

:

w �X>
AD

y

↵A = 0
�D

y

XAw �byA = �eA
�y

>
A↵A = 0

with D
y

= diag(yA), ↵A = ↵(A) , yA = y(A) et XA = X (XA; :).

The KKT conditions as a linear system
8
<

:

w �X>
AD

y

↵A = 0
�D

y

XAw �byA = �eA
�y

>
A↵A = 0

with D
y

= diag(yA), ↵A = ↵(A) , yA = y(A) et XA = X (XA; :).

=

I �X>
AD

y

0

�D
y

XA 0 �yA

0 �y

>
A 0

w

↵A

b

0

�eA

0

we can work on it to separate w from (↵A, b)

The SVM dual formulation
The SVM Wolfe dual

8
>>>>>><

>>>>>>:

max
w,b,↵

1
2kwk2 �

nX

i=1

↵
i

�
y
i

(w>
x

i

+ b)� 1
�

with ↵
i

� 0 i = 1, . . . , n

and w �
nX

i=1

↵
i

y
i

x

i

= 0 and
nX

i=1

↵
i

y
i

= 0

using the fact: w =
nX

i=1

↵
i

y

i

x

i

The SVM Wolfe dual without w and b
8
>>>>>><

>>>>>>:

max
↵

� 1
2

nX

i=1

nX

j=1

↵
j

↵
i

y
i

y
j

x

>
j

x

i

+
nX

i=1

↵
i

with ↵
i

� 0 i = 1, . . . , n

and
nX

i=1

↵
i

y
i

= 0

Linear SVM dual formulation
L(w, b,↵) =

1
2
kwk2 �

nX

i=1

↵
i

�
y
i

(w>
x

i

+ b)� 1
�

Optimality: w =
nX

i=1

↵
i

y
i

x

i

nX

i=1

↵
i

y
i

= 0

L(↵) = 1
2

nX

i=1

nX

j=1

↵
j

↵
i

y
i

y
j

x

>
j

x

i

| {z }
w

>
w

�P
n

i=1 ↵i

y
i

nX

j=1

↵
j

y
j

x

>
j

| {z }
w

>

x

i

� b
nX

i=1

↵
i

y
i

| {z }
=0

+
P

n

i=1 ↵i

= �1
2

nX

i=1

nX

j=1

↵
j

↵
i

y
i

y
j

x

>
j

x

i

+
nX

i=1

↵
i

Dual linear SVM is also a quadratic program

problem D

8
><

>:

min
↵2IRn

1
2↵

>G↵� e

>↵

with y

>↵ = 0
and 0 ↵

i

i = 1, n

with G a symmetric matrix n ⇥ n such that G
ij

= y
i

y
j

x

>
j

x

i

SVM primal vs. dual

Primal

8
><

>:

min
w2IRd ,b2IR

1

2

kwk2

with y

i

(w>
x

i

+ b) � 1
i = 1, n

d + 1 unknown
n constraints
classical QP
perfect when d << n

Dual

8
><

>:

min
↵2IRn

1

2

↵>
G↵� e

>↵

with y

>↵ = 0
and 0 ↵

i

i = 1, n

n unknown
G Gram matrix (pairwise
influence matrix)
n box constraints
easy to solve
to be used when d > n

f (x) =
dX

j=1

w

j

x

j

+ b =
nX

i=1

↵
i

y

i

(x>x

i

) + b

SVM primal vs. dual

Primal

8
><

>:

min
w2IRd ,b2IR

1

2

kwk2

with y

i

(w>
x

i

+ b) � 1
i = 1, n

d + 1 unknown
n constraints
classical QP
perfect when d << n

Dual

8
><

>:

min
↵2IRn

1

2

↵>
G↵� e

>↵

with y

>↵ = 0
and 0 ↵

i

i = 1, n

n unknown
G Gram matrix (pairwise
influence matrix)
n box constraints
easy to solve
to be used when d > n

f (x) =
dX

j=1

w

j

x

j

+ b =
nX

i=1

↵
i

y

i

(x>x

i

) + b

Road map

1 Supervised classification and prediction

2 Linear SVM
Separating hyperplanes
Linear SVM: the problem
Optimization in 5 slides
Dual formulation of the linear SVM
The non separable case

3 Kernels

4 Kernelized support vector machine 0

0

Slack j

The non separable case: a bi criteria optimization problem

Modeling potential errors: introducing slack variables ⇠
i

(x
i

, y
i

)

⇢
no error: y

i

(w>
x

i

+ b) � 1) ⇠
i

= 0
error: ⇠

i

= 1� y
i

(w>
x

i

+ b) > 0
0

0

Slack j

8
>>>>>>><

>>>>>>>:

min
w,b,⇠

1
2
kwk2

min
w,b,⇠

C

p

nX

i=1

⇠p

i

with y

i

(w>
x

i

+ b) � 1� ⇠
i

⇠
i

� 0 i = 1, n

Our hope: almost all ⇠
i

= 0

The non separable case
Modeling potential errors: introducing slack variables ⇠

i

(x
i

, y
i

)

⇢
no error: y

i

(w>
x

i

+ b) � 1) ⇠
i

= 0
error: ⇠

i

= 1� y
i

(w>
x

i

+ b) > 0

Minimizing also the slack (the error), for a given C > 0
8
>>><

>>>:

min
w,b,⇠

1
2
kwk2 + C

p

nX

i=1

⇠p

i

with y

i

(w>
x

i

+ b) � 1� ⇠
i

i = 1, n
⇠
i

� 0 i = 1, n

Looking for the saddle point of the lagrangian with the Lagrange
multipliers ↵

i

� 0 and �
i

� 0

L(w, b,↵,�) =
1
2
kwk2 + C

p

nX

i=1

⇠p

i

�
nX

i=1

↵
i

�
y
i

(w>
x

i

+ b)� 1 + ⇠
i

��
nX

i=1

�
i

⇠
i

The KKT

L(w, b,↵,�) =
1
2
kwk2 + C

p

nX

i=1

⇠p

i

�
nX

i=1

↵
i

�
y
i

(w>
x

i

+ b)� 1 + ⇠
i

��
nX

i=1

�
i

⇠
i

stationarity w �
nX

i=1

↵
i

y
i

x

i

= 0 and
nX

i=1

↵
i

y
i

= 0

C � ↵
i

� �
i

= 0 i = 1, . . . , n

primal admissibility y
i

(w>
x

i

+ b) � 1 i = 1, . . . , n

⇠
i

� 0 i = 1, . . . , n

dual admissibility ↵
i

� 0 i = 1, . . . , n

�
i

� 0 i = 1, . . . , n

complementarity ↵
i

⇣
y
i

(w>
x

i

+ b)� 1 + ⇠
i

⌘
= 0 i = 1, . . . , n

�
i

⇠
i

= 0 i = 1, . . . , n

Let’s eliminate �!

KKT

stationarity w �
nX

i=1

↵
i

y
i

x

i

= 0 and
nX

i=1

↵
i

y
i

= 0

primal admissibility y
i

(w>
x

i

+ b) � 1 i = 1, . . . , n
⇠
i

� 0 i = 1, . . . , n;

dual admissibility ↵
i

� 0 i = 1, . . . , n
C � ↵

i

� 0 i = 1, . . . , n;

complementarity ↵
i

⇣
y
i

(w>
x

i

+ b)� 1 + ⇠
i

⌘
= 0 i = 1, . . . , n

(C � ↵
i

) ⇠
i

= 0 i = 1, . . . , n

sets I0 IA I
C

↵
i

0 0 < ↵ < C C
�

i

C C � ↵ 0
⇠
i

0 0 1� y
i

(w>
x

i

+ b)
y
i

(w>
x

i

+ b) > 1 y
i

(w>
x

i

+ b) = 1 y
i

(w>
x

i

+ b) < 1
useless usefull (support vec) suspicious

The importance of being support

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

.

data
point ↵

constraint
value set

x

i

useless ↵
i

= 0 y

i

�
w

>
x

i

+ b

�
> 1 I

0

x

i

support 0 < ↵
i

< C y

i

�
w

>
x

i

+ b

�
= 1 I↵

x

i

suspicious ↵
i

= C y

i

�
w

>
x

i

+ b

�
< 1 I

C

Table : When a data point is « support » it lies exactly on the margin.

here lies the efficiency of the algorithm (and its complexity)!

sparsity: ↵
i

= 0

Optimality conditions (p = 1)

L(w, b,↵,�) =
1
2
kwk2 + C

nX

i=1

⇠
i

�
nX

i=1

↵
i

�
y
i

(w>
x

i

+ b)� 1 + ⇠
i

��
nX

i=1

�
i

⇠
i

Computing the gradients:

8
>>>>>><

>>>>>>:

r
w

L(w, b,↵) = w �
nX

i=1

↵
i

y
i

x

i

@L(w, b,↵)
@b

=
nX

i=1

↵
i

y
i

r⇠iL(w, b,↵) = C � ↵
i

� �
i

no change for w and b

�
i

� 0 and C � ↵
i

� �
i

= 0) ↵
i

 C

The dual formulation:
8
><

>:

min
↵2IRn

1
2↵

>G↵� e

>↵

with y

>↵ = 0
and 0 ↵

i

 C i = 1, n

SVM primal vs. dual

Primal

8
>>><

>>>:

min
w,b,⇠2IRn

1

2

kwk2 + C

nX

i=1

⇠
i

with y

i

(w>
x

i

+ b) � 1� ⇠
i

⇠
i

� 0 i = 1, n

d + n + 1 unknown
2n constraints
classical QP
to be used when n is too
large to build G

Dual

8
><

>:

min
↵2IRn

1

2

↵>
G↵� e

>↵

with y

>↵ = 0
and 0 ↵

i

 C i = 1, n

n unknown
G Gram matrix (pairwise
influence matrix)
2n box constraints
easy to solve
to be used when n is not too
large

Eliminating the slack but not the possible mistakes
8
>>><

>>>:

min
w,b,⇠2IRn

1
2kwk2 + C

nX

i=1

⇠
i

with y
i

(w>
x

i

+ b) � 1� ⇠
i

⇠
i

� 0 i = 1, n

Introducing the hinge loss

⇠
i

= max
�
1� y

i

(w>
x

i

+ b), 0
�

min
w,b

1
2 kwk2 + C

nX

i=1

max
�
0, 1� y

i

(w>
x

i

+ b)
�

Back to d + 1 variables, but this is no longer an explicit QP

The hinge and other loss

Square hinge: (huber/hinge) and Lasso SVM

min
w,b

kwk1 + C
nX

i=1

max
�
1� y

i

(w>
x

i

+ b), 0
�
p

Penalized Logistic regression (Maxent)

min
w,b

kwk22 � C
nX

i=1

log
�
1 + exp�2yi (w

>
xi+b)

�

The exponential loss (commonly used in boosting)

min
w,b

kwk22 + C
nX

i=1

exp�yi (w
>

xi+b)

The sigmoid loss

min
w,b

kwk22 � C
nX

i=1

tanh
�
y
i

(w>
x

i

+ b)
�

−1 0 1
0

1

yf(x)

cl
as

si
fic

at
io

n
lo

ss

0/1 loss
hinge
hinge2

logistic
exponential
sigmoid

Roadmap

1 Supervised classification and prediction

2 Linear SVM
Separating hyperplanes
Linear SVM: the problem
Optimization in 5 slides
Dual formulation of the linear SVM
The non separable case

3 Kernels

4 Kernelized support vector machine

Introducing non linearities through the feature map
SVM Val

f (x) =
dX

j=1

x
j

w
j

+ b =
nX

i=1

↵
i

(x>
i

x) + b

✓
t

1

t

2

◆
2 IR2

�(t) =

t

1

x

1

t

2

1

x

2

t

2

x

3

t

2

2

x

4

t

1

t

2

x

5

linear in x 2 IR5

quadratic in t 2 IR2

The feature map

� : IR2 �! IR5

t 7�! �(t) = x

x

>
i

x = �(t
i

)>�(t)

Stéphane Canu (INSA Rouen - LITIS) September 9, 2014 39 / 62

Introducing non linearities through the feature map
SVM Val

f (x) =
dX

j=1

x
j

w
j

+ b =
nX

i=1

↵
i

(x>
i

x) + b

✓
t

1

t

2

◆
2 IR2 �(t) =

t

1

x

1

t

2

1

x

2

t

2

x

3

t

2

2

x

4

t

1

t

2

x

5

linear in x 2 IR5

quadratic in t 2 IR2

The feature map

� : IR2 �! IR5

t 7�! �(t) = x

x

>
i

x = �(t
i

)>�(t)
Stéphane Canu (INSA Rouen - LITIS) September 9, 2014 39 / 62

Introducing non linearities through the feature map

A. Lorena & A. de Carvalho, Uma Introducão às Support Vector Machines, 2007

Stéphane Canu (INSA Rouen - LITIS) September 9, 2014 40 / 62

Non linear case: dictionary vs. kernel

in the non linear case: use a dictionary of functions

�
j

(x), j = 1, p with possibly p =1

for instance polynomials, wavelets...

f (x) =
pX

j=1

w
j

�
j

(x) with w
j

=
nX

i=1

↵
i

y
i

�
j

(x
i

)

so that

f (x) =
nX

i=1

↵
i

y
i

pX

j=1

�
j

(x
i

)�
j

(x)

| {z }
k(xi ,x)

p � n so what since k(x
i

, x) =
P

p

j=1 �j

(x
i

)�
j

(x)

Stéphane Canu (INSA Rouen - LITIS) September 9, 2014 41 / 62

Non linear case: dictionary vs. kernel

in the non linear case: use a dictionary of functions

�
j

(x), j = 1, p with possibly p =1

for instance polynomials, wavelets...

f (x) =
pX

j=1

w
j

�
j

(x) with w
j

=
nX

i=1

↵
i

y
i

�
j

(x
i

)

so that

f (x) =
nX

i=1

↵
i

y
i

pX

j=1

�
j

(x
i

)�
j

(x)

| {z }
k(xi ,x)

p � n so what since k(x
i

, x) =
P

p

j=1 �j

(x
i

)�
j

(x)

Stéphane Canu (INSA Rouen - LITIS) September 9, 2014 41 / 62

closed form kernel: the quadratic kernel
The quadratic dictionary in IRd :

� : IRd ! IRp=1+d+ d (d+1)
2

s 7! � =
�
1, s1, s2, ..., sd , s2

1 , s
2
2 , ..., s

2
d

, ..., s
i

s
j

, ...
�

in this case
�(s)>�(t) = 1 + s1t1 + s2t2 + ...+ s

d

t
d

+ s2
1 t2

1 + ...+ s2
d

t2
d

+ ...+ s
i

s
j

t
i

t
j

+ ...

The quadratic kenrel: s, t 2 IRd , k(s, t) =
�
s

>t + 1
�2

= 1 + 2s>t +
�
s

>t
�2 computes

the dot product of the reweighted dictionary:

� : IRd ! IRp=1+d+ d (d+1)
2

s 7! � =
�
1,
p

2s1,
p

2s2, ...,
p

2s
d

, s2
1 , s

2
2 , ..., s

2
d

, ...,
p

2s
i

s
j

, ...
�

p = 1 + d + d(d+1)
2

multiplications vs. d + 1
use kernel to save computration

Stéphane Canu (INSA Rouen - LITIS) September 9, 2014 42 / 62

closed form kernel: the quadratic kernel
The quadratic dictionary in IRd :

� : IRd ! IRp=1+d+ d (d+1)
2

s 7! � =
�
1, s1, s2, ..., sd , s2

1 , s
2
2 , ..., s

2
d

, ..., s
i

s
j

, ...
�

in this case
�(s)>�(t) = 1 + s1t1 + s2t2 + ...+ s

d

t
d

+ s2
1 t2

1 + ...+ s2
d

t2
d

+ ...+ s
i

s
j

t
i

t
j

+ ...

The quadratic kenrel: s, t 2 IRd , k(s, t) =
�
s

>t + 1
�2

= 1 + 2s>t +
�
s

>t
�2 computes

the dot product of the reweighted dictionary:

� : IRd ! IRp=1+d+ d (d+1)
2

s 7! � =
�
1,
p

2s1,
p

2s2, ...,
p

2s
d

, s2
1 , s

2
2 , ..., s

2
d

, ...,
p

2s
i

s
j

, ...
�

p = 1 + d + d(d+1)
2

multiplications vs. d + 1
use kernel to save computration

Stéphane Canu (INSA Rouen - LITIS) September 9, 2014 42 / 62

closed form kernel: the quadratic kernel
The quadratic dictionary in IRd :

� : IRd ! IRp=1+d+ d (d+1)
2

s 7! � =
�
1, s1, s2, ..., sd , s2

1 , s
2
2 , ..., s

2
d

, ..., s
i

s
j

, ...
�

in this case
�(s)>�(t) = 1 + s1t1 + s2t2 + ...+ s

d

t
d

+ s2
1 t2

1 + ...+ s2
d

t2
d

+ ...+ s
i

s
j

t
i

t
j

+ ...

The quadratic kenrel: s, t 2 IRd , k(s, t) =
�
s

>t + 1
�2

= 1 + 2s>t +
�
s

>t
�2 computes

the dot product of the reweighted dictionary:

� : IRd ! IRp=1+d+ d (d+1)
2

s 7! � =
�
1,
p

2s1,
p

2s2, ...,
p

2s
d

, s2
1 , s

2
2 , ..., s

2
d

, ...,
p

2s
i

s
j

, ...
�

p = 1 + d + d(d+1)
2

multiplications vs. d + 1
use kernel to save computration

Stéphane Canu (INSA Rouen - LITIS) September 9, 2014 42 / 62

kernel: features through pairwise comparisons

x �(x)

e.g. a text e.g. BOW

K

n examples

n
e
x
a
m

p
l
e
s

�

p features

n
e
x
a
m

p
l
e
s

k(x
i

, x
j

) =
pX

j=1

�
j

(x
i

)�
j

(x
j

)

K The matrix of pairwise comparizons (O(n2))

Stéphane Canu (INSA Rouen - LITIS) September 9, 2014 43 / 62

Kenrel machine
kernel as a dictionary

f (x) =
nX

i=1

↵
i

k(x, x
i

)

↵
i

influence of example i depends on y

i

k(x, x
i

) the kernel do NOT depend on y

i

Definition (Kernel)

Let ⌦ be a non empty set (the input space).

A kernel is a function k from ⌦⇥ ⌦ onto IR. k : ⌦⇥ ⌦ 7�! IR
s, t �! k(s, t)

semi-parametric version: given the family q

j

(x), j = 1, p

f (x) =
nX

i=1

↵
i

k(x, x
i

)+
pX

j=1

�
j

q

j

(x)

Kenrel machine
kernel as a dictionary

f (x) =
nX

i=1

↵
i

k(x, x
i

)

↵
i

influence of example i depends on y

i

k(x, x
i

) the kernel do NOT depend on y

i

Definition (Kernel)

Let ⌦ be a non empty set (the input space).

A kernel is a function k from ⌦⇥ ⌦ onto IR. k : ⌦⇥ ⌦ 7�! IR
s, t �! k(s, t)

semi-parametric version: given the family q

j

(x), j = 1, p

f (x) =
nX

i=1

↵
i

k(x, x
i

)+
pX

j=1

�
j

q

j

(x)

In the beginning was the kernel...

Definition (Kernel)

a function of two variable k from ⌦⇥ ⌦ to IR

Definition (Positive kernel)

A kernel k(s, t) on ⌦ is said to be positive
if it is symetric: k(s, t) = k(t, s)

an if for any finite positive interger n:

8{↵
i

}
i=1,n 2 IR, 8{x

i

}
i=1,n 2 ⌦,

nX

i=1

nX

j=1

↵
i

↵
j

k(x
i

, x
j

) � 0

it is strictly positive if for ↵
i

6= 0
nX

i=1

nX

j=1

↵
i

↵
j

k(x
i

, x
j

) > 0

Examples of positive kernels
the linear kernel: s, t 2 IRd , k(s, t) = s

>t

symetric: s

>t = t>s

positive:
nX

i=1

nX

j=1

↵i↵jk(xi , xj) =
nX

i=1

nX

j=1

↵i↵jx
>
i xj

=

 nX

i=1

↵ixi

!>
0

@
nX

j=1

↵jxj

1

A =

�����

nX

i=1

↵ixi

�����

2

the product kernel: k(s, t) = g(s)g(t) for some g : IRd ! IR,

symetric by construction
positive:

nX

i=1

nX

j=1

↵i↵jk(xi , xj) =
nX

i=1

nX

j=1

↵i↵jg(xi)g(xj)

=

 nX

i=1

↵ig(xi)

!0

@
nX

j=1

↵jg(xj)

1

A =

 nX

i=1

↵ig(xi)

!
2

k is positive , (its square root exists) , k(s, t) = h�
s

,�ti

J.P. Vert, 2006

Positive definite Kernel (PDK) algebra (closure)

if k

1

(s, t) and k

2

(s, t) are two positive kernels

DPK are a convex cone: 8a1 2 IR+ a1k1(s, t) + k2(s, t)

product kernel k1(s, t)k2(s, t)

proofs

by linearity:
nX

i=1

nX

j=1

↵i↵j
�
a

1

k

1

(i , j) + k

2

(i , j)
�
= a

1

nX

i=1

nX

j=1

↵i↵jk1

(i , j) +
nX

i=1

nX

j=1

↵i↵jk2

(i , j)

assuming 9 ` s.t. k

1

(s, t) =
X

`

 `(s) `(t)

nX

i=1

nX

j=1

↵i↵j k

1

(xi , xj)k2

(xi , xj) =
nX

i=1

nX

j=1

↵i↵j
�X

`

 `(xi) `(xj)k2

(xi , xj)
�

=
X

`

nX

i=1

nX

j=1

�
↵i `(xi)

� �
↵j `(xj)

�
k

2

(xi , xj)

N. Cristianini and J. Shawe Taylor, kernel methods for pattern analysis, 2004

Kernel engineering: building PDK
for any polynomial with positive coef. � from IR to IR

�
�
k(s, t)

�

if is a function from IRd to IRd

k

�
 (s), (t)

�

if ' from IRd to IR+, is minimum in 0
k(s, t) = '(s + t)� '(s� t)

convolution of two positive kernels is a positive kernel
K

1

? K

2

Example : the Gaussian kernel is a PDK

exp(�ks� tk2) = exp(�ksk2 � ktk2 + 2s>t)
= exp(�ksk2) exp(�ktk2) exp(2s>t)

s

>t is a PDK and function exp as the limit of positive series expansion, so
exp(2s>t) is a PDK

exp(�ksk2) exp(�ktk2) is a PDK as a product kernel

the product of two PDK is a PDK
O. Catoni, master lecture, 2005

some examples of PD kernels...

type name k(s, t)

radial gaussian exp
⇣
� r

2

b

⌘
, r = ks � tk

radial laplacian exp(�r/b)

radial rationnal 1� r

2

r

2+b

radial loc. gauss. max
�
0, 1� r

3b

�
d exp(� r

2

b

)

non stat. �2 exp(�r/b), r =
P

k

(sk�tk)
2

sk+tk

projective polynomial (s>t)p

projective affine (s>t + b)p

projective cosine s

>
t/kskktk

projective correlation exp
⇣

s

>
t

kskktk � b

⌘

Most of the kernels depends on a quantity b called the bandwidth

Roadmap

1 Supervised classification and prediction

2 Linear SVM
Separating hyperplanes
Linear SVM: the problem
Optimization in 5 slides
Dual formulation of the linear SVM
The non separable case

3 Kernels

4 Kernelized support vector machine −1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

1

Stéphane Canu (INSA Rouen - LITIS) September 9, 2014 50 / 62

using relevant features...

a data point becomes a function x �! k(x, •)

Representer theorem for SVM
(

min
f ,b

1
2kf k2H

with y
i

�
f (x

i

) + b
� � 1

Lagrangian

L(f , b,↵) =
1
2
kf k2H �

nX

i=1

↵
i

�
y
i

(f (x
i

) + b)� 1
�

↵ � 0

optimility condition: r
f

L(f , b,↵) = 0, f (x) =
nX

i=1

↵
i

y
i

k(x
i

, x)

Eliminate f from L:

8
>>>><

>>>>:

kf k2H =
nX

i=1

nX

j=1

↵
i

↵
j

y
i

y
j

k(x
i

, x
j

)

nX

i=1

↵
i

y
i

f (x
i

) =
nX

i=1

nX

j=1

↵
i

↵
j

y
i

y
j

k(x
i

, x
j

)

Q(b,↵) = �1
2

nX

i=1

nX

j=1

↵
i

↵
j

y
i

y
j

k(x
i

, x
j

)�
nX

i=1

↵
i

�
y
i

b � 1
�

Dual formulation for SVM
the intermediate function

Q(b,↵) = �1
2

nX

i=1

nX

j=1

↵
i

↵
j

y
i

y
j

k(x
i

, x
j

)� b
� nX

i=1

↵
i

y
i

�
+

nX

i=1

↵
i

max
↵

min
b

Q(b,↵)

b can be seen as the Lagrange multiplier of the following (balanced)
constaint

P
n

i=1 ↵i

y
i

= 0 which is also the optimality KKT condition on b

Dual formulation
8
>>>>>><

>>>>>>:

max
↵2IRn

� 1
2

nX

i=1

nX

j=1

↵
i

↵
j

y
i

y
j

k(x
i

, x
j

) +
nX

i=1

↵
i

such that
nX

i=1

↵
i

y
i

= 0

and 0 ↵
i

, i = 1, n

SVM dual formulation

Dual formulation8
>>>><

>>>>:

max
↵2IRn

� 1
2

nX

i=1

nX

j=1

↵
i

↵
j

y
i

y
j

k(x
i

, x
j

) +
nX

i=1

↵
i

with
nX

i=1

↵
i

y
i

= 0 and 0 ↵
i

, i = 1, n

The dual formulation gives a quadratic program (QP)(
min
↵2IRn

1
2↵

>G↵� I1>↵
with ↵>

y = 0 and 0 ↵

with G
ij

= y
i

y
j

k(x
i

, x
j

)

with the linear kernel f (x) =
P

n

i=1 ↵i

y
i

(x>x

i

) =
P

d

j=1 �j

x
j

when d is small wrt. n primal may be interesting.

the general case: C -SVM
Primal formulation

(P)

8
><

>:
min

f 2H,b,⇠2IRn
1
2kf k2 + C

p

nX

i=1

⇠p

i

such that y
i

�
f (x

i

) + b
� � 1� ⇠

i

, ⇠
i

� 0, i = 1, n

C is the regularization path parameter (to be tuned)

p = 1 , L

1

SVM(
max
↵2IRn

� 1
2↵

>G↵+ ↵>I1
such that ↵>

y = 0 and 0 ↵
i

 C i = 1, n

p = 2, L

2

SVM (
max
↵2IRn

� 1
2↵

> �
G + 1

C

I
�
↵+ ↵>I1

such that ↵>
y = 0 and 0 ↵

i

i = 1, n

the regularization path: is the set of solutions ↵(C) when C varies

Data groups: illustration
f (x) =

nX

i=1

↵ik(x, xi)

D(x) = sign

�
f (x) + b

�

useless data important data suspicious data
well classified support

↵ = 0 0 < ↵ < C ↵ = C

the regularization path: is the set of solutions ↵(C) when C varies

The importance of being support

f (x) =
nX

i=1

↵
i

y
i

k(x
i

, x)

data
point ↵

constraint
value set

x

i

useless ↵
i

= 0 y

i

�
f (x

i

) + b

�
> 1 I

0

x

i

support 0 < ↵
i

< C y

i

�
f (x

i

) + b

�
= 1 I↵

x

i

suspicious ↵
i

= C y

i

�
f (x

i

) + b

�
< 1 I

C

Table : When a data point is « support » it lies exactly on the margin.

here lies the efficiency of the algorithm (and its complexity)!

sparsity: ↵
i

= 0

checker board

2 classes
500 examples
separable

Stéphane Canu (INSA Rouen - LITIS) September 9, 2014 58 / 62

a separable case

n = 500 data points

n = 5000 data points

Stéphane Canu (INSA Rouen - LITIS) September 9, 2014 59 / 62

Tuning C and � (the kernel width) : grid search

Stéphane Canu (INSA Rouen - LITIS) September 9, 2014 60 / 62

Empirical complexity

103 104
10−1

100

101

102

103

Training size (log)

103 104
101

102

103

104

Training size (log)

103 104
0

5

10

15

20

25

30

35

40

Training size (log)

103 104
10−1

100

101

102

103

Training size (log)

103 104
101

102

103

104

Training size (log)

103 104
0

5

10

15

20

25

30

35

40

Training size (log)

103 104
10−1

100

101

102

103

Training size (log)

103 104
101

102

103

104

Training size (log)

103 104
0

5

10

15

20

25

30

35

40

Training size (log)

103 104
10−1

100

101

102

103

Training size (log)

103 104
101

102

103

104

Training size (log)

103 104
0

5

10

15

20

25

30

35

40

Training size (log)

103 104
10−1

100

101

102

103

Training size (log)

103 104
101

102

103

104

Training size (log)

103 104
0

5

10

15

20

25

30

35

40

Training size (log)

103 104
10−1

100

101

102

103

Training size (log)

103 104
101

102

103

104

Training size (log)

103 104
0

5

10

15

20

25

30

35

40

Training size (log)

CVM

LibSVM

SimpleSVM

Results for C = 1
Left : γ = 1 Right γ = 0.3

Results for C = 1000
Left : γ = 1 Right γ = 0.3

Results for C = 1000000
Left : γ = 1 Right γ = 0.3

Training
time
results
in cpu
seconds
(log scale)

Number of
Support
Vectors

(log scale)

Error
rate (%)

(over 2000
unseen
points)

G. Loosli et al JMLR, 2007

Stéphane Canu (INSA Rouen - LITIS) September 9, 2014 61 / 62

Conclusion

Learning as an optimization problem
I use CVX to prototype
I MonQP
I specific parallel and distributed solvers

Universal through Kernelization (dual trick)

Scalability
I Sparsity provides scalability
I Kernel implies "locality"
I Big data limitations: back to primal (an linear)

	
	Supervised classification and prediction
	Linear SVM
	Separating hyperplanes
	Linear SVM: the problem
	Optimization in 5 slides
	Dual formulation of the linear SVM
	The non separable case

	Kernels
	Kernelized support vector machine

