SVM and kernel machines: linear and non-linear classification

Prof. Stéphane Canu

Kernel methods are a class of learning machine that has become an increasingly popular tool for learning tasks such as pattern recognition, classification or novelty detection. This popularity is mainly due to the success of the support vector machines (SVM), probably the most popular kernel method, and to the fact that kernel machines can be used in many applications as they provide a bridge from linearity to non-linearity. This allows the generalization of many well known methods such as PCA or LDA to name a few. Other key points related with kernel machines are convex optimization, duality and related sparcity. The Objective of this course is to provide an overview of all these issues related with kernels machines. To do so, we will introduce kernel machines and associated mathematical foundations through practical implementation. All lectures will be devoted to the writing of some Matlab functions that, putting all together, will provide a toolbox for learning with kernels.

About Stéphane Canu

Stéphane Canu is a Professor of the LITIS research laboratory and of the information technology department, at the National institute of applied science in Rouen (INSA). He has been the former executive director of the LITIS, an information technology research laboratory in Normandy (150 researcher) form 2005 to 2012. He received a Ph.D. degree in System Command from Comiègne University of Technology in 1986. He joined the faculty department of Computer Science at Compiegne University of Technology in 1987. He received the French habilitation degree from Paris 6 University. In 1997, he joined the Rouen Applied Sciences National Institute (INSA) as a full professor, where he created the information engineering department. He has been the dean of this department until 2002 when he was named director of the computing service and facilities unit. In 2004 he join for one sabbatical year the machine learning group at ANU/NICTA (Canberra) with Alex Smola

SUMMER SCHOOL \#OBIDAM14 / 8-9 Sep 2014 Brest (France) oceandatamining.sciencesconf.org

and Bob Williamson. In the last five years, he has published approximately thirty papers in refereed conference proceedings or journals in the areas of theory, algorithms and applications using kernel machines learning algorithm and other flexible regression methods. His research interests includes kernels and frames machines, regularization, machine learning applied to signal processing, pattern classification, matrix factorization for recommender systems and learning for context aware applications.

SVM and Kernel machine linear and non-linear classification

Stéphane Canu stephane.canu@litislab.eu

Ocean's Big Data Mining, 2014
September 9, 2014

Road map

(1) Supervised classification and prediction

(2) Linear SVM

- Separating hyperplanes
- Linear SVM: the problem
- Optimization in 5 slides
- Dual formulation of the linear SVM
- The non separable case
(3) Kernels

(4) Kernelized support vector machine

Supervised classification as Learning from examples

The task, use longitude and latitude to predict: is it a boat or a house?

Supervised classification as Learning from examples

Using (red and green) labelled examples learn a (yellow) decision rule

Supervised classification as Learning from examples

Using (red and green) labelled examples...

Supervised classification as Learning from examples

Using (red and green) labelled examples... learn a (yellow) decision rule

Supervised classification as Learning from examples

Use the decision border to predict unseen objects label

Suppervised classification: the 2 steps

(1) the border $\leftarrow \operatorname{Learn}(x i, y i, n$ training data) $\% \mathcal{A}$ is SVM_learn
(2) $\quad y_{p} \leftarrow \operatorname{Predict(unseen~} x$, the border) $\% f$ is SVM_val

Unavaliable speakers (more qualified in Environmental Data Learning ;)

Mikhail Kanevski UNIL geostat

Unavaliable speakers (more qualified in Environmental Data Learning ;)

Mikhail Kanevski
UNIL geostat
S. Thiria \& F. Badran UPMC Locean

less "ocean", but...

more maths, more optimization, more matlab...

Road map

(1) Supervised classification and prediction
(2) Linear SVM

- Separating hyperplanes
- Linear SVM: the problem
- Optimization in 5 slides
- Dual formulation of the linear SVM
- The non separable case
(3) Kernels

4 Kernelized support vector machine

"The algorithms for constructing the separating hyperplane considered above will be utilized for developing a battery of programs for pattern recognition. " in Learning with kernels, 2002 - from V .Vapnik, 1982

Separating hyperplanes

Find a line to separate (classify) blue from red

$$
D(x)=\operatorname{sign}\left(\mathbf{v}^{\top} \mathbf{x}+a\right)
$$

Separating hyperplanes

Find a line to separate (classify) blue from red

$$
D(x)=\operatorname{sign}\left(\mathbf{v}^{\top} \mathbf{x}+a\right)
$$

the decision border:

$$
\mathbf{v}^{\top} \mathbf{x}+a=0
$$

Separating hyperplanes

Find a line to separate (classify) blue from red

$$
D(x)=\operatorname{sign}\left(\mathbf{v}^{\top} \mathbf{x}+a\right)
$$

the decision border:

$$
\mathbf{v}^{\top} \mathbf{x}+a=0
$$

there are many solutions...
The problem is ill posed
How to choose a solution?

Maximize our confidence $=$ maximize the margin the decision border: $\Delta(\mathbf{v}, \mathrm{a})=\left\{\mathbf{x} \in \mathbb{R}^{d} \mid \mathbf{v}^{\top} \mathbf{x}+\mathrm{a}=0\right\}$ maximize the margin

Maximize the confidence

$$
\begin{cases}\max _{\mathbf{v}, a} & m \\ \text { with } & \min _{i=1, n} \frac{\left|\mathbf{v}^{\top} \mathbf{x}_{i}+a\right|}{\|\mathbf{v}\|} \geq m\end{cases}
$$

the problem is still ill posed if (\mathbf{v}, a) is a solution, $\forall 0<k(k v, k a)$ is also a solution...

From the geometrical to the numerical margin

Maximize the (geometrical) margin

if the min is greater, everybody is greater $\left(y_{i} \in\{-1,1\}\right)$

$$
\begin{cases}\max _{\mathbf{v}, a} & m \\ \text { with } & \frac{y_{i}\left(\mathbf{v}^{\top} \mathbf{x}_{i}+a\right)}{\|\mathbf{v}\|} \geq m, \quad i=1, n\end{cases}
$$

From the geometrical to the numerical margin

Maximize the (geometrical) margin

if the min is greater, everybody is greater $\left(y_{i} \in\{-1,1\}\right)$

$$
\begin{cases}\max _{\mathbf{v}, a} & m \\ \text { with } & \frac{y_{i}\left(\mathbf{v}^{\top} \mathbf{x}_{i}+a\right)}{\|\mathbf{v}\|} \geq m, \quad i=1, n\end{cases}
$$

change variable: $\mathbf{w}=\frac{\mathbf{v}}{m\|\mathbf{v}\|}$ and $b=\frac{a}{m\|\mathbf{v}\|} \Longrightarrow\|\mathbf{w}\|=\frac{1}{m}$
$\left\{\begin{array}{ll}\max & m \\ \mathbf{w}, b \\ \text { with } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \quad ; i=1, n \\ \text { and } & m=\frac{1}{\|\mathbf{w}\|}\end{array} \quad \begin{cases}\min _{\mathbf{w}, b} & \|\mathbf{w}\|^{2} \\ \text { with } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \\ & i=1, n\end{cases}\right.$

Road map

(1) Supervised classification and prediction
(2) Linear SVM

- Separating hyperplanes
- Linear SVM: the problem
- Optimization in 5 slides
- Dual formulation of the linear SVM
- The non separable case
(3) Kernels

4. Kernelized support vector machine

"The algorithms for constructing the separating hyperplane considered above will be utilized for developing a battery of programs for pattern recognition." in Learning with kernels, 2002 - from V .Vapnik, 1982

Linear SVM: the problem

The maximal margin (=minimal norm) canonical hyperplane

Linear SVMs are the solution of the following problem (called primal)
Let $\left\{\left(\mathrm{x}_{i}, y_{i}\right) ; i=1: n\right\}$ be a set of labelled data with $\mathrm{x} \in \mathbb{R}^{d}, y_{i} \in\{1,-1\}$ A support vector machine (SVM) is a linear classifier associated with the following decision function: $D(x)=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)$ where $\mathbf{w} \in \mathbb{R}^{d}$ and $b \in \mathbb{R}$ a given thought the solution of the following problem:

$$
\begin{cases}\min _{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}} & \frac{1}{2}\|\mathbf{w}\|^{2} \\ \text { with } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1, \quad i=1, n\end{cases}
$$

This is a quadratic program (QP): $\left\{\begin{array}{cl}\min _{\mathbf{z}} & \frac{1}{2} \mathbf{z}^{\top} A \mathbf{z}-\mathbf{d}^{\top} \mathbf{z} \\ \text { with } & B \mathbf{z} \leq \mathbf{e}\end{array}\right.$

Support vector machines as a QP

The Standart QP formulation
$\left\{\begin{array}{ll}\min _{\mathbf{w}, b} & \frac{1}{2}\|\mathbf{w}\|^{2} \\ \text { with } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1, i=1, n\end{array} \Leftrightarrow \begin{cases}\min _{\mathbf{z} \in \mathbb{R}^{d+1}} & \frac{1}{2} \mathbf{z}^{\top} A \mathbf{z}-\mathbf{d}^{\top} \mathbf{z} \\ \text { with } & B \mathbf{z} \leq \mathbf{e}\end{cases}\right.$
$\mathbf{z}=(\mathbf{w}, b)^{\top}, \mathbf{d}=(0, \ldots, 0)^{\top}, A=\left[\begin{array}{ll}l & 0 \\ 0 & 0\end{array}\right], B=-[\operatorname{diag}(\mathbf{y}) X, \mathbf{y}]$ and $\mathbf{e}=-(1, \ldots, 1)^{\top}$

Solve it using a standard QP solver such as (for instance)

```
% QUADPROG Quadratic programming.
    X = QUADPROG(H,f,A,b) attempts to solve the quadratic programming problem:
    min 0.5*x'*H*x + f'*x subject to: A*x <= b
so that the solution is in the range LB <= X <= UB
```

For more solvers (just to name a few) have a look at:

- plato.asu.edu/sub/nlores.html\#QP-problem
- www.numerical.rl.ac.uk/people/nimg/qp/qp.html

Road map

(1) Supervised classification and prediction
(2) Linear SVM

- Separating hyperplanes
- Linear SVM: the problem
- Optimization in 5 slides
- Dual formulation of the linear SVM
- The non separable case
(3) Kernels
(4) Kernelized support vector machine

Stephen Boyd and

 Lieven VandenbergheConvex optimization

First order optimality condition (1)

$$
\text { problem } \mathcal{P}= \begin{cases}\min _{x \in \mathbf{R}^{n}} & J(\mathbf{x}) \\ \text { with } & h_{j}(x)=0 \quad j=1, \ldots, p \\ \text { and } & g_{i}(x) \leq 0 i=1, \ldots, q\end{cases}
$$

Definition: Karush, Kuhn and Tucker (KKT) conditions

$$
\text { stationarity } \nabla J\left(x^{\star}\right)+\sum_{j=1}^{p} \lambda_{j} \nabla h_{j}\left(x^{\star}\right)+\sum_{i=1}^{q} \mu_{i} \nabla g_{i}\left(x^{\star}\right)=0
$$

primal admissibility $h_{j}\left(x^{\star}\right)=0$

$$
g_{i}\left(x^{\star}\right) \leq 0
$$

$$
\begin{aligned}
& j=1, \ldots, p \\
& i=1, \ldots, q
\end{aligned}
$$

dual admissibility $\mu_{i} \geq 0$
$i=1, \ldots, q$ complementarity $\mu_{i} g_{i}\left(x^{\star}\right)=0$

$$
i=1, \ldots, q
$$

λ_{j} and μ_{i} are called the Lagrange multipliers of problem \mathcal{P}

First order optimality condition (2)

Theorem (12.1 Nocedal \& Wright pp 321)
If a vector x^{\star} is a stationary point of problem \mathcal{P}
Then there exists ${ }^{a}$ Lagrange multipliers such that $\left(x^{\star},\left\{\lambda_{j}\right\}_{j=1: p},\left\{\mu_{i}\right\}_{i=1: q}\right)$ fulfill KKT conditions
${ }^{a}$ under some conditions e.g. linear independence constraint qualification

If the problem is convex, then a stationary point is the solution of the problem

A quadratic program (QP) is convex when.

$$
(Q P) \begin{cases}\min _{\mathbf{z}} & \frac{1}{2} \mathbf{z}^{\top} A \mathbf{z}-\mathbf{d}^{\top} \mathbf{z} \\ \text { with } & B \mathbf{z} \leq \mathbf{e}\end{cases}
$$

\ldots.. when matrix A is positive definite

KKT condition - Lagrangian (3)

$$
\text { problem } \mathcal{P}= \begin{cases}\min _{x \in \mathbf{R}^{n}} & J(\mathbf{x}) \\ \text { with } & h_{j}(x)=0 \quad j=1, \ldots, p \\ \text { and } & g_{i}(x) \leq 0 i=1, \ldots, q\end{cases}
$$

Definition: Lagrangian

The lagrangian of problem \mathcal{P} is the following function:

$$
\mathcal{L}(\mathbf{x}, \lambda, \mu)=J(x)+\sum_{j=1}^{p} \lambda_{j} h_{j}(x)+\sum_{i=1}^{q} \mu_{i} g_{i}(x)
$$

The importance of being a lagrangian

- the stationarity condition can be written: $\nabla \mathcal{L}\left(\mathbf{x}^{\star}, \lambda, \mu\right)=0$
- the lagrangian saddle point $\max _{\lambda, \mu} \min _{\mathrm{x}} \mathcal{L}(\mathbf{x}, \lambda, \mu)$

Primal variables: x and dual variables λ, μ (the Lagrange multipliers)

Duality - definitions (1)

Primal and (Lagrange) dual problems

$$
\mathcal{P}=\left\{\begin{array}{lll}
\min _{x \in \mathbf{R}^{\boldsymbol{n}}} J(\mathbf{x}) & \\
\text { with } & h_{j}(x)=0 & j=1, p \\
\text { and } & g_{i}(x) \leq 0 & i=1, q
\end{array} \quad \mathcal{D}= \begin{cases}\max _{\lambda \in \mathbf{R}^{\boldsymbol{P}}, \mu \in \mathbf{R}^{\boldsymbol{q}}} & Q(\lambda, \mu) \\
\text { with } & \mu_{j} \geq 0 \quad j=1, q\end{cases}\right.
$$

Dual objective function:

$$
\begin{aligned}
Q(\lambda, \mu) & =\inf _{x} \mathcal{L}(\mathbf{x}, \lambda, \mu) \\
& =\inf _{x} J(x)+\sum_{j=1}^{p} \lambda_{j} h_{j}(x)+\sum_{i=1}^{q} \mu_{i} g_{i}(x)
\end{aligned}
$$

Wolf dual problem

$$
\mathcal{W}= \begin{cases}\max _{\mathbf{x}, \lambda \in \mathbf{R}^{\boldsymbol{p}}, \mu \in \mathbf{R}^{\boldsymbol{q}}} & \mathcal{L}(\mathbf{x}, \lambda, \mu) \\ \text { with } & \mu_{j} \geq 0 \quad j=1, q \\ \text { and } & \nabla J\left(x^{\star}\right)+\sum_{j=1}^{p} \lambda_{j} \nabla h_{j}\left(x^{\star}\right)+\sum_{i=1}^{q} \mu_{i} \nabla g_{i}\left(x^{\star}\right)=0\end{cases}
$$

Duality - theorems (2)

Theorem (12.12, 12.13 and 12.14 Nocedal \& Wright pp 346)

If f, g and h are convex and continuously differentiable ${ }^{a}$, then the solution of the dual problem is the same as the solution of the primal
${ }^{a}$ under some conditions e.g. linear independence constraint qualification

$$
\begin{aligned}
\left(\lambda^{\star}, \mu^{\star}\right) & =\text { solution of problem } \mathcal{D} \\
\mathbf{x}^{\star} & =\underset{\mathbf{x}}{\arg \min } \mathcal{L}\left(\mathbf{x}, \lambda^{\star}, \mu^{\star}\right)
\end{aligned}
$$

$$
\begin{aligned}
Q\left(\lambda^{\star}, \mu^{\star}\right)=\underset{\mathbf{x}}{\arg \min } \mathcal{L}\left(\mathbf{x}, \lambda^{\star}, \mu^{\star}\right) & =\mathcal{L}\left(\mathbf{x}^{\star}, \lambda^{\star}, \mu^{\star}\right) \\
& =J\left(\mathbf{x}^{\star}\right)+\lambda^{\star} H\left(\mathbf{x}^{\star}\right)+\mu^{\star} G\left(\mathbf{x}^{\star}\right)=J\left(\mathbf{x}^{\star}\right)
\end{aligned}
$$

and for any feasible point x

$$
Q(\lambda, \mu) \leq J(\mathbf{x}) \quad \rightarrow \quad 0 \leq J(\mathrm{x})-Q(\lambda, \mu)
$$

The duality gap is the difference between the primal and dual cost functions

Road map

(1) Supervised classification and prediction
(2) Linear SVM

- Separating hyperplanes
- Linear SVM: the problem
- Optimization in 5 slides
- Dual formulation of the linear SVM
- The non separable case
(3) Kernels
(4) Kernelized support vector machine

Figure from L. Bottou \& C.J. Lin, Support vector machine solvers, in Large scale kernel machines, 2007.

Linear SVM dual formulation - The lagrangian

$$
\begin{cases}\min _{\mathbf{w}, b} & \frac{1}{2}\|\mathbf{w}\|^{2} \\ \text { with } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \quad i=1, n\end{cases}
$$

Looking for the lagrangian saddle point $\max _{\alpha} \min _{\mathbf{w}, b} \mathcal{L}(\mathbf{w}, b, \alpha)$ with so called lagrange multipliers $\alpha_{i} \geq 0$

$$
\mathcal{L}(\mathbf{w}, b, \alpha)=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1\right)
$$

α_{i} represents the influence of constraint thus the influence of the training example $\left(x_{i}, y_{i}\right)$

Stationarity conditions

$$
\mathcal{L}(\mathbf{w}, b, \alpha)=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1\right)
$$

Computing the gradients: $\begin{cases}\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, b, \alpha) & =\mathbf{w}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \\ \frac{\partial \mathcal{L}(\mathbf{w}, b, \alpha)}{\partial b} & =\sum_{i=1}^{n} \alpha_{i} y_{i}\end{cases}$
we have the following optimality conditions

$$
\left\{\begin{array}{l}
\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, b, \alpha)=0 \Rightarrow \mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \\
\frac{\partial \mathcal{L}(\mathbf{w}, b, \alpha)}{\partial b}=0 \Rightarrow \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}\right.
$$

KKT conditions for SVM

$$
\text { stationarity } \mathbf{w}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}=0 \quad \text { and } \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

primal admissibility $y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1$ dual admissibility $\alpha_{i} \geq 0$

$$
i=1, \ldots, n
$$

$$
i=1, \ldots, n
$$

complementarity $\alpha_{i}\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1\right)=0 \quad i=1, \ldots, n$

The complementary condition split the data into two sets

- \mathcal{A} be the set of active constraints:
usefull points

$$
\mathcal{A}=\left\{i \in[1, n] \mid y_{i}\left(\mathbf{w}^{* \top} \mathbf{x}_{i}+b^{*}\right)=1\right\}
$$

- its complementary $\overline{\mathcal{A}}$
useless points

$$
\text { if } i \notin \mathcal{A}, \alpha_{i}=0
$$

The KKT conditions for SVM

The same KKT but using matrix notations and the active set \mathcal{A}

$$
\begin{array}{ll}
\text { stationarity } & \mathbf{w}-X^{\top} D_{y} \alpha=0 \\
& \alpha^{\top} y=0
\end{array}
$$

primal admissibility $D_{y}(X w+b \mathbb{I}) \geq \mathbb{I}$

$$
\begin{array}{cl}
\text { dual admissibility } & \alpha \geq 0 \\
\text { complementarity } & D_{y}\left(X_{\mathcal{A}} \mathbf{w}+b \mathbb{I}_{\mathcal{A}}\right)=\mathbb{I}_{\mathcal{A}} \\
& \alpha_{\overline{\mathcal{A}}}=0
\end{array}
$$

Knowing \mathcal{A}, the solution verifies the following linear system:

$$
\left\{\begin{array}{ccl}
\mathbf{w} & -X_{\mathcal{A}}^{\top} D_{y} \alpha_{\mathcal{A}} & \\
-D_{y} X_{\mathcal{A}} \mathbf{w} & -b \mathbf{y}_{\mathcal{A}} & =-\mathbf{e}_{\mathcal{A}} \\
& -\mathbf{y}_{\mathcal{A}}^{\top} \alpha_{\mathcal{A}} & \\
\hline
\end{array}\right.
$$

with $D_{y}=\operatorname{diag}\left(\mathbf{y}_{\mathcal{A}}\right), \alpha_{\mathcal{A}}=\alpha(\mathcal{A}), \mathbf{y}_{\mathcal{A}}=\mathbf{y}(\mathcal{A})$ et $X_{\mathcal{A}}=X\left(X_{\mathcal{A}} ;:\right)$.

The KKT conditions as a linear system

$$
\left\{\begin{array}{ccl}
\mathbf{w} & -X_{\mathcal{A}}^{\top} D_{y} \alpha_{\mathcal{A}} & =0 \\
-D_{y} X_{\mathcal{A}} \mathbf{w} & -b \mathbf{y}_{\mathcal{A}} & =-\mathbf{e}_{\mathcal{A}} \\
& -\mathbf{y}_{\mathcal{A}}^{\top} \alpha_{\mathcal{A}} &
\end{array}\right.
$$

with $D_{y}=\operatorname{diag}\left(\mathbf{y}_{\mathcal{A}}\right), \alpha_{\mathcal{A}}=\alpha(\mathcal{A}), \mathbf{y}_{\mathcal{A}}=\mathbf{y}(\mathcal{A})$ et $X_{\mathcal{A}}=X\left(X_{\mathcal{A}} ;:\right)$.

I	$-X_{\mathcal{A}}^{\top} D_{y}$	0
$-D_{y} X_{\mathcal{A}}$	0	$-\mathbf{y}_{\mathcal{A}}$
0	$-\mathbf{y}_{\mathcal{A}}^{\top}$	0

we can work on it to separate \mathbf{w} from $\left(\alpha_{\mathcal{A}}, b\right)$

The SVM dual formulation

The SVM Wolfe dual

$$
\left\{\begin{array}{ll}
\max _{\mathbf{w}, b, \alpha} & \frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1\right) \\
\text { with } & \alpha_{i} \geq 0 \\
\text { and } & \mathbf{w}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}=0 \text { and } \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array} \quad i=1, \ldots, n\right.
$$

using the fact: $\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$
The SVM Wolfe dual without \mathbf{w} and b

$$
\left\{\begin{array}{ll}
\max _{\alpha} & -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{j} \alpha_{i} y_{i} y_{j} \mathbf{x}_{j}^{\top} \mathbf{x}_{i}+\sum_{i=1}^{n} \alpha_{i} \\
\text { with } & \alpha_{i} \geq 0 \\
\text { and } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array} \quad i=1, \ldots, n\right.
$$

Linear SVM dual formulation

$$
\mathcal{L}(\mathbf{w}, b, \alpha)=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1\right)
$$

Optimality: $\mathbf{w}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0$

$$
\begin{aligned}
\mathcal{L}(\alpha) & =\frac{1}{2} \underbrace{\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{j} \alpha_{i} y_{i} y_{j} \mathbf{x}_{j}^{\top} \mathbf{x}_{i}}_{\mathbf{w}^{\top} \mathbf{w}}-\sum_{i=1}^{n} \alpha_{i} y_{i} \underbrace{\sum_{j=1}^{n} \alpha_{j} y_{j} \mathbf{x}_{j}^{\top}}_{\mathbf{w}^{\top}} \mathbf{x}_{i}-\underbrace{b \underbrace{n}_{i=1} \alpha_{i} y_{i}}_{=0}+\sum_{i=1}^{n} \alpha_{i} \\
& =-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n^{\top}} \alpha_{j} \alpha_{i} y_{i} y_{j} \mathbf{x}_{j}^{\top} \mathbf{x}_{i}+\sum_{i=1}^{n} \alpha_{i}
\end{aligned}
$$

Dual linear SVM is also a quadratic program

$$
\text { problem } \mathcal{D}\left\{\begin{array}{ll}
\min _{\alpha \in \mathbf{R}^{n}} & \frac{1}{2} \alpha^{\top} G \alpha-\mathbf{e}^{\top} \alpha \\
\text { with } & \mathbf{y}^{\top} \alpha=0 \\
\text { and } & 0 \leq \alpha_{i}
\end{array} \quad i=1, n\right.
$$

with G a symmetric matrix $n \times n$ such that $G_{i j}=y_{i} y_{j} \mathbf{x}_{j}^{\top} \mathbf{x}_{i}$

SVM primal vs. dual

Primal

$$
\begin{cases}\min _{\mathbf{w} \in \mathbb{R}^{d}, b \in \mathbb{R}} & \frac{1}{2}\|\mathbf{w}\|^{2} \\ \text { with } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \\ & i=1, n\end{cases}
$$

- d +1 unknown
- n constraints
- classical QP
- perfect when $d \ll n$
- n unknown
- G Gram matrix (pairwise influence matrix)
- n box constraints
- easy to solve
- to be used when $d>n$

Dual

$$
\begin{cases}\min _{\alpha \in \mathbb{R}^{n}} & \frac{1}{2} \alpha^{\top} G \alpha-\mathbf{e}^{\top} \alpha \\ \text { with } & \mathbf{y}^{\top} \alpha=0 \\ \text { and } & 0 \leq \alpha_{i} \quad i=1, n\end{cases}
$$

SVM primal vs. dual

Primal

Dual

$$
\left\{\begin{array} { l l }
{ \operatorname { m i n } _ { \mathbf { w } \in \mathbb { R } ^ { d } , b \in \mathbb { R } } } & { \frac { 1 } { 2 } \| \mathbf { w } \| ^ { 2 } } \\
{ \text { with } } & { y _ { i } (\mathbf { w } ^ { \top } \mathbf { x } _ { i } + b) \geq 1 } \\
{ i = 1 , n }
\end{array} \quad \left\{\begin{array}{lll}
\min _{\alpha \in \mathbb{R}^{n}} & \frac{1}{2} \alpha^{\top} G \alpha-\mathbf{e}^{\top} \alpha \\
\text { with } & \mathbf{y}^{\top} \alpha=0 \\
\text { and } & 0 \leq \alpha_{i}
\end{array} \quad i=1, n\right.\right.
$$

- n unknown
- $d+1$ unknown
- n constraints
- classical QP
- perfect when $d \ll n$
- G Gram matrix (pairwise influence matrix)
- n box constraints
- easy to solve
- to be used when $d>n$

$$
f(\mathbf{x})=\sum_{j=1}^{d} w_{j} x_{j}+b=\sum_{i=1}^{n} \alpha_{i} y_{i}\left(\mathbf{x}^{\top} \mathbf{x}_{i}\right)+b
$$

Road map

(1) Supervised classification and prediction
(2) Linear SVM

- Separating hyperplanes
- Linear SVM: the problem
- Optimization in 5 slides
- Dual formulation of the linear SVM
- The non separable case
(3) Kernels
(4) Kernelized support vector machine

The non separable case: a bi criteria optimization problem
Modeling potential errors: introducing slack variables ξ_{i}

$$
\left(x_{i}, y_{i}\right) \quad \begin{cases}\text { no error: } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \Rightarrow \begin{array}{l}
\xi_{i}=0 \\
\text { error: }
\end{array} \\
\xi_{i}=1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)>0\end{cases}
$$

$$
\begin{cases}\min _{\mathbf{w}, b, \xi} & \frac{1}{2}\|\mathbf{w}\|^{2} \\ \min _{\mathbf{w}, b, \xi} & \frac{C}{p} \sum_{i=1}^{n} \xi_{i}^{p} \\ \text { with } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \\ & \xi_{i} \geq 0 \quad i=1, n\end{cases}
$$

Our hope: almost all $\xi_{i}=0$

The non separable case

Modeling potential errors: introducing slack variables ξ_{i}

$$
\left(x_{i}, y_{i}\right) \quad\left\{\begin{array}{lll}
\text { no error: } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \Rightarrow & \xi_{i}=0 \\
\text { error: } & \xi_{i}=1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)>0
\end{array}\right.
$$

Minimizing also the slack (the error), for a given $C>0$

$$
\left\{\begin{array}{lll}
\min _{\mathbf{w}, b, \xi} & \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{p} \sum_{i=1}^{n} \xi_{i}^{p} & \\
\text { with } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} & i=1, n \\
& \xi_{i} \geq 0 & i=1, n
\end{array}\right.
$$

Looking for the saddle point of the lagrangian with the Lagrange multipliers $\alpha_{i} \geq 0$ and $\beta_{i} \geq 0$

$$
\mathcal{L}(\mathbf{w}, b, \alpha, \beta)=\frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{p} \sum_{i=1}^{n} \xi_{i}^{p}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1+\xi_{i}\right)-\sum_{i=1}^{n} \beta_{i} \xi_{i}
$$

The KKT

$$
\begin{array}{cc}
\mathcal{L}(\mathbf{w}, b, \alpha, \beta)=\frac{1}{2}\|\mathbf{w}\|^{2}+\frac{C}{p} \sum_{i=1}^{n} \xi_{i}^{p}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1+\xi_{i}\right)-\sum_{i=1}^{n} \beta_{i} \xi_{i} \\
\text { stationarity } \mathbf{w}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}=0 & \text { and } \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
C-\alpha_{i}-\beta_{i}=0 & i=1, \ldots, n \\
\text { primal admissibility } \begin{array}{ll}
y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 & i=1, \ldots, n \\
\xi_{i} \geq 0 & i=1, \ldots, n \\
\text { dual admissibility } \alpha_{i} \geq 0 & i=1, \ldots, n \\
\beta_{i} \geq 0 & i=1, \ldots, n \\
\text { complementarity } \alpha_{i}\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1+\xi_{i}\right)=0 & i=1, \ldots, n \\
\beta_{i} \xi_{i}=0 &
\end{array} \\
\begin{array}{ll}
& i=1, \ldots, n
\end{array}
\end{array}
$$

Let's eliminate β !

$$
\text { stationarity } \mathbf{w}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}=0 \quad \text { and } \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

primal admissibility $y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1$

$$
\xi_{i} \geq 0
$$

dual admissibility $\alpha_{i} \geq 0$

$$
C-\alpha_{i} \geq 0
$$

$$
i=1, \ldots, n
$$

complementarity $\alpha_{i}\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1+\xi_{i}\right)=0 \quad i=1, \ldots, n$

$$
\left(C-\alpha_{i}\right) \xi_{i}=0 \quad i=1, \ldots, n
$$

sets	I_{0}	$I_{\mathcal{A}}$	I_{C}
α_{i}	0	$0<\alpha<C$	C
β_{i}	C	$C-\alpha$	0
ξ_{i}	0	0	$1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)$
	$y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)>1$	$y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)=1$	$y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)<1$
	useless	usefull (support vec $)$	suspicious

The importance of being support

data point	α	constraint value	set
\mathbf{x}_{i} useless	$\alpha_{i}=0$	$y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)>1$	I_{0}
\mathbf{x}_{i} support	$0<\alpha_{i}<C$	$y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)=1$	I_{α}
\mathbf{x}_{i} suspicious	$\alpha_{i}=C$	$y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)<1$	I_{C}

Table: When a data point is «support» it lies exactly on the margin.
here lies the efficiency of the algorithm (and its complexity)! sparsity: $\alpha_{i}=0$

Optimality conditions $(p=1)$
$\mathcal{L}(\mathbf{w}, b, \alpha, \beta)=\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)-1+\xi_{i}\right)-\sum_{i=1}^{n} \beta_{i} \xi_{i}$
Computing the gradients: $\begin{cases}\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, b, \alpha) & =\mathbf{w}-\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} \\ \frac{\partial \mathcal{L}(\mathbf{w}, b, \alpha)}{\partial b} & =\sum_{i=1}^{n} \alpha_{i} y_{i} \\ \nabla_{\xi_{i}} \mathcal{L}(\mathbf{w}, b, \alpha) & =C-\alpha_{i}-\beta_{i}\end{cases}$

- no change for \mathbf{w} and b
- $\beta_{i} \geq 0$ and $C-\alpha_{i}-\beta_{i}=0 \quad \Rightarrow \quad \alpha_{i} \leq C$

The dual formulation:

$$
\begin{cases}\min _{\alpha \in \mathbf{R}^{n}} & \frac{1}{2} \alpha^{\top} G \alpha-\mathbf{e}^{\top} \alpha \\ \text { with } & \mathbf{y}^{\top} \alpha=0 \\ \text { and } & 0 \leq \alpha_{i} \leq C \quad i=1, n\end{cases}
$$

SVM primal vs. dual

Primal

$\begin{cases}\min _{\mathbf{w}, b, \xi \in \mathbb{R}^{n}} & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i} \\ \text { with } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \\ & \xi_{i} \geq 0 \quad i=1, n\end{cases}$

Dual

$\begin{cases}\min _{\alpha \in \mathbb{R}^{n}} & \frac{1}{2} \alpha^{\top} G \alpha-\mathbf{e}^{\top} \alpha \\ \text { with } & \mathrm{y}^{\top} \alpha=0 \\ \text { and } & 0 \leq \alpha_{i} \leq C \quad i=1, n\end{cases}$

- n unknown
- $d+n+1$ unknown
- $2 n$ constraints
- classical QP
- to be used when n is too large to build G
- G Gram matrix (pairwise influence matrix)
- $2 n$ box constraints
- easy to solve
- to be used when n is not too large

Eliminating the slack but not the possible mistakes

$$
\begin{cases}\min _{\mathbf{w}, b, \xi \in \mathbb{R}^{n}} & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \xi_{i} \\ \text { with } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \\ & \xi_{i} \geq 0 \quad i=1, n\end{cases}
$$

Introducing the hinge loss

$$
\begin{gathered}
\xi_{i}=\max \left(1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right), 0\right) \\
\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n} \max \left(0,1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right)
\end{gathered}
$$

Back to $d+1$ variables, but this is no longer an explicit QP

The hinge and other loss

Square hinge: (huber/hinge) and Lasso SVM

$$
\min _{\mathbf{w}, b}\|\mathbf{w}\|_{1}+C \sum_{i=1}^{n^{\prime}} \max \left(1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right), 0\right)^{p}
$$

Penalized Logistic regression (Maxent)

$$
\min _{\mathbf{w}, b}\|\boldsymbol{w}\|_{2}^{2}-C \sum_{i=1}^{n} \log \left(1+\exp ^{-2 y_{i}\left(\mathbf{w}^{\top} x_{i}+b\right)}\right)
$$

The exponential loss (commonly used in boosting)

$$
\min _{\mathbf{w}, b}\|\mathbf{w}\|_{2}^{2}+C \sum_{i=1}^{n} \exp ^{-y_{i}\left(\mathbf{w}^{\top} x_{i}+b\right)}
$$

The sigmoid loss

$$
\min _{\mathbf{w}, b}\|\mathbf{w}\|_{2}^{2}-C \sum_{i=1}^{n} \tanh \left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right)
$$

Roadmap

(1) Supervised classification and prediction
(2) Linear SVM

- Separating hyperplanes
- Linear SVM: the problem
- Optimization in 5 slides
- Dual formulation of the linear SVM
- The non separable case
(3) Kernels
(4) Kernelized support vector machine

Introducing non linearities through the feature map SVM Val

$$
f(\mathbf{x})=\sum_{j=1}^{d} x_{j} w_{j}+b=\sum_{i=1}^{n} \alpha_{i}\left(\mathbf{x}_{i}^{\top} \mathbf{x}\right)+b
$$

$$
\binom{t_{1}}{t_{2}} \in \mathbb{R}^{2}
$$

	x_{1}
x_{2}	
x_{3}	
x_{4}	
x_{5}	

linear in $x \in \mathbb{R}^{5}$

Introducing non linearities through the feature map SVM Val

$$
f(\mathbf{x})=\sum_{j=1}^{d} x_{j} w_{j}+b=\sum_{i=1}^{n} \alpha_{i}\left(\mathbf{x}_{i}^{\top} \mathbf{x}\right)+b
$$

$$
\binom{t_{1}}{t_{2}} \in \mathbb{R}^{2}
$$

$$
\phi(t)=\begin{array}{|c|c|}
\hline t_{1} & x_{1} \\
t_{1}^{2} & x_{2} \\
t_{2} & x_{3} \\
t_{2}^{2} & x_{4} \\
t_{1} t_{2} & x_{5} \\
\hline
\end{array}
$$

linear in $x \in \mathbb{R}^{5}$
quadratic in $t \in \mathbb{R}^{2}$

The feature map

$$
\begin{aligned}
& \phi: \mathbb{R}^{2} \\
& \mathrm{t} \longrightarrow \mathbb{R}^{5} \\
& \longmapsto \phi(\mathrm{t})=\mathrm{x}
\end{aligned}
$$

$$
\mathbf{x}_{i}^{\top} \mathrm{x}=\phi\left(\mathrm{t}_{i}\right)^{\top} \phi(\mathrm{t})
$$

Introducing non linearities through the feature map

Figura 8. (a) Conjunto de dados não linear; (b) Fronteira não linear no espaço de entradas; (c)
Fronteira linear no espaço de características [28]
A. Lorena \& A. de Carvalho, Uma Introducão às Support Vector Machines, 2007

Non linear case: dictionary vs. kernel

in the non linear case: use a dictionary of functions

$$
\phi_{j}(\mathbf{x}), j=1, p \quad \text { with possibly } \quad p=\infty
$$

for instance polynomials, wavelets...

$$
f(\mathbf{x})=\sum_{j=1}^{p} w_{j} \phi_{j}(\mathbf{x}) \quad \text { with } \quad w_{j}=\sum_{i=1}^{n} \alpha_{i} y_{i} \phi_{j}\left(\mathbf{x}_{i}\right)
$$

so that

$$
f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} \underbrace{\sum_{j=1}^{p} \phi_{j}\left(\mathbf{x}_{i}\right) \phi_{j}(\mathbf{x})}_{k\left(\mathbf{x}_{i}, \mathbf{x}\right)}
$$

Non linear case: dictionary vs. kernel

in the non linear case: use a dictionary of functions

$$
\phi_{j}(\mathbf{x}), j=1, p \quad \text { with possibly } \quad p=\infty
$$

for instance polynomials, wavelets...

$$
f(\mathbf{x})=\sum_{j=1}^{p} w_{j} \phi_{j}(\mathbf{x}) \quad \text { with } \quad w_{j}=\sum_{i=1}^{n} \alpha_{i} y_{i} \phi_{j}\left(\mathbf{x}_{i}\right)
$$

so that

$$
f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} \underbrace{\sum_{j=1}^{p} \phi_{j}\left(\mathbf{x}_{i}\right) \phi_{j}(\mathbf{x})}_{k\left(\mathbf{x}_{i}, \mathbf{x}\right)}
$$

$p \geq n$ so what since $k\left(\mathbf{x}_{i}, \mathbf{x}\right)=\sum_{j=1}^{p} \phi_{j}\left(\mathbf{x}_{i}\right) \phi_{j}(\mathbf{x})$

closed form kernel: the quadratic kernel

The quadratic dictionary in \mathbb{R}^{d} :

$$
\begin{aligned}
\Phi: \quad \mathbb{R}^{d} & \rightarrow \mathbb{R}^{p=1+d+\frac{d(d+1)}{2}} \\
\mathbf{s} & \mapsto \Phi=\left(1, s_{1}, s_{2}, \ldots, s_{d}, s_{1}^{2}, s_{2}^{2}, \ldots, s_{d}^{2}, \ldots, s_{i} s_{j}, \ldots\right)
\end{aligned}
$$

in this case
$\Phi(\mathbf{s})^{\top} \Phi(\mathrm{t})=1+s_{1} t_{1}+s_{2} t_{2}+\ldots+s_{d} t_{d}+s_{1}^{2} t_{1}^{2}+\ldots+s_{d}^{2} t_{d}^{2}+\ldots+s_{i} s_{j} t_{i} t_{j}+\ldots$

closed form kernel: the quadratic kernel

The quadratic dictionary in \mathbb{R}^{d} :

$$
\begin{aligned}
\Phi: \quad \mathbb{R}^{d} & \rightarrow \mathbb{R}^{p=1+d+\frac{d(d+1)}{2}} \\
\mathbf{s} & \mapsto \Phi=\left(1, s_{1}, s_{2}, \ldots, s_{d}, s_{1}^{2}, s_{2}^{2}, \ldots, s_{d}^{2}, \ldots, s_{i} s_{j}, \ldots\right)
\end{aligned}
$$

in this case
$\Phi(\mathbf{s})^{\top} \Phi(\mathrm{t})=1+s_{1} t_{1}+s_{2} t_{2}+\ldots+s_{d} t_{d}+s_{1}^{2} t_{1}^{2}+\ldots+s_{d}^{2} t_{d}^{2}+\ldots+s_{i} s_{j} t_{i} t_{j}+\ldots$
The quadratic kenrel: $\mathbf{s}, \mathrm{t} \in \mathbb{R}^{d}, \quad k(\mathbf{s}, \mathrm{t})=\left(\mathbf{s}^{\top} \mathrm{t}+1\right)^{2}$

$$
\begin{aligned}
& =(\mathbf{s} \mathrm{t}+1) \\
& =1+2 \mathbf{s}^{\top} \mathrm{t}+\left(\mathbf{s}^{\top} \mathrm{t}\right)^{2} \quad \text { computes }
\end{aligned}
$$

the dot product of the reweighted dictionary:

$$
\begin{aligned}
\Phi: \quad \mathbb{R}^{d} & \rightarrow \mathbb{R}^{p=1+d+\frac{d(d+1)}{2}} \\
\mathbf{s} & \mapsto \Phi=\left(1, \sqrt{2} s_{1}, \sqrt{2} s_{2}, \ldots, \sqrt{2} s_{d}, s_{1}^{2}, s_{2}^{2}, \ldots, s_{d}^{2}, \ldots, \sqrt{2} s_{i} s_{j}, \ldots\right)
\end{aligned}
$$

closed form kernel: the quadratic kernel

The quadratic dictionary in \mathbb{R}^{d} :

$$
\begin{aligned}
\Phi: \mathbb{R}^{d} & \rightarrow \mathbb{R}^{p=1+d+\frac{d(d+1)}{2}} \\
\mathbf{s} & \mapsto \Phi=\left(1, s_{1}, s_{2}, \ldots, s_{d}, s_{1}^{2}, s_{2}^{2}, \ldots, s_{d}^{2}, \ldots, s_{i} s_{j}, \ldots\right)
\end{aligned}
$$

in this case
$\Phi(\mathbf{s})^{\top} \Phi(\mathrm{t})=1+s_{1} t_{1}+s_{2} t_{2}+\ldots+s_{d} t_{d}+s_{1}^{2} t_{1}^{2}+\ldots+s_{d}^{2} t_{d}^{2}+\ldots+s_{i} s_{j} t_{i} t_{j}+\ldots$
The quadratic kenrel: $\mathbf{s}, \mathrm{t} \in \mathbb{R}^{d}, \quad k(\mathbf{s}, \mathrm{t})=\left(\mathbf{s}^{\top} \mathrm{t}+1\right)^{2}$

$$
\begin{aligned}
& =\left(\mathbf{s}^{\mathrm{t}}+\mathbf{1}\right) \\
& =1+2 \mathbf{s}^{\top} \mathrm{t}+\left(\mathbf{s}^{\top} \mathrm{t}\right)^{2} \quad \text { computes }
\end{aligned}
$$

the dot product of the reweighted dictionary:

$$
\begin{aligned}
& \Phi: \quad \mathbb{R}^{d} \rightarrow \mathbb{R}^{p=1+d+\frac{d(d+1)}{2}} \\
& \mathbf{s} \mapsto \Phi=\left(1, \sqrt{2} s_{1}, \sqrt{2} s_{2}, \ldots, \sqrt{2} s_{d}, s_{1}^{2}, s_{2}^{2}, \ldots, s_{d}^{2}, \ldots, \sqrt{2} s_{i} s_{j}, \ldots\right) \\
& p=1+d+\frac{d(d+1)}{2} \text { multiplications vs. } \quad d+1 \\
& \text { use kernel to save computration }
\end{aligned}
$$

kernel: features through pairwise comparisons

Kenrel machine

kernel as a dictionary

$$
f(x)=\sum_{i=1}^{n} \alpha_{i} k\left(x, x_{i}\right)
$$

- α_{i} influence of example i
- $k\left(\mathrm{x}, \mathrm{x}_{i}\right)$ the kernel
depends on y_{i}
do NOT depend on y_{i}

Definition (Kernel)

Let Ω be a non empty set (the input space).
A kernel is a function k from $\Omega \times \Omega$ onto \mathbb{R}.

$$
\begin{aligned}
k: \Omega \times \Omega & \longmapsto \mathbb{R} \\
\mathbf{s}, \mathrm{t} & \longrightarrow k(\mathbf{s}, \mathrm{t})
\end{aligned}
$$

Kenrel machine

kernel as a dictionary

$$
f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}, \mathbf{x}_{i}\right)
$$

- α_{i} influence of example i
- $k\left(x, x_{i}\right)$ the kernel
depends on y_{i}
do NOT depend on y_{i}

Definition (Kernel)

Let Ω be a non empty set (the input space).
A kernel is a function k from $\Omega \times \Omega$ onto \mathbb{R}.

$$
\begin{array}{rll}
k: \Omega \times \Omega & \longmapsto \mathbb{R} \\
\mathbf{s}, \mathrm{t} & \longrightarrow k(\mathbf{s}, \mathrm{t})
\end{array}
$$

semi-parametric version: given the family $q_{j}(x), j=1, p$

$$
f(x)=\sum_{i=1}^{n} \alpha_{i} k\left(x, x_{i}\right)+\sum_{j=1}^{p} \beta_{j} q_{j}(x)
$$

In the beginning was the kernel...

Definition (Kernel)

a function of two variable k from $\Omega \times \Omega$ to \mathbb{R}

Definition (Positive kernel)

A kernel $k(s, t)$ on Ω is said to be positive

- if it is symetric: $k(s, t)=k(t, s)$
- an if for any finite positive interger n :

$$
\forall\left\{\alpha_{i}\right\}_{i=1, n} \in \mathbb{R}, \forall\left\{\mathbf{x}_{i}\right\}_{i=1, n} \in \Omega, \quad \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq 0
$$

it is strictly positive if for $\alpha_{i} \neq 0$

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)>0
$$

Examples of positive kernels

the linear kernel: $\mathbf{s}, \mathrm{t} \in \mathbb{R}^{d}, \quad k(\mathbf{s}, \mathrm{t})=\mathbf{s}^{\top} \mathrm{t}$

symetric: $\mathbf{s}^{\top} \mathrm{t}=\mathrm{t}^{\top} \mathbf{s}$
positive: $\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} \mathbf{x}_{i}^{\top} \mathbf{x}_{j}$
$=\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)^{\top}\left(\sum_{j=1}^{n} \alpha_{j} \mathrm{x}_{j}\right)=\left\|\sum_{i=1}^{n} \alpha_{i} \mathrm{x}_{i}\right\|^{2}$
the product kernel: $\quad k(\mathbf{s}, \mathrm{t})=g(\mathbf{s}) g(\mathrm{t}) \quad$ for some $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$, symetric by construction
positive:

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} g\left(\mathbf{x}_{i}\right) g\left(\mathbf{x}_{j}\right) \\
& =\left(\sum_{i=1}^{n} \alpha_{i} g\left(\mathbf{x}_{i}\right)\right)\left(\sum_{j=1}^{n} \alpha_{j} g\left(\mathbf{x}_{j}\right)\right)=\left(\sum_{i=1}^{n} \alpha_{i} g\left(\mathbf{x}_{i}\right)\right)^{2}
\end{aligned}
$$

$$
k \text { is positive } \Leftrightarrow(\text { its square root exists }) \Leftrightarrow k(\mathbf{s}, \mathrm{t})=\left\langle\phi_{\mathbf{s}}, \phi_{\mathrm{t}}\right\rangle
$$

Positive definite Kernel (PDK) algebra (closure)

if $k_{1}(\mathrm{~s}, \mathrm{t})$ and $k_{2}(\mathrm{~s}, \mathrm{t})$ are two positive kernels

- DPK are a convex cone:

$$
\begin{array}{r}
\forall a_{1} \in \mathbb{R}^{+} \quad a_{1} k_{1}(\mathbf{s}, \mathrm{t})+k_{2}(\mathbf{s}, \mathrm{t}) \\
k_{1}(\mathbf{s}, \mathrm{t}) k_{2}(\mathbf{s}, \mathrm{t})
\end{array}
$$

proofs

- by linearity:

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j}\left(a_{1} k_{1}(i, j)+k_{2}(i, j)\right)=a_{1} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k_{1}(i, j)+\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k_{2}(i, j)
$$

- assuming $\exists \psi_{\ell}$ s.t. $k_{1}(\mathbf{s}, \mathrm{t})=\sum_{\ell} \psi_{\ell}(\mathbf{s}) \psi_{\ell}(\mathrm{t})$

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k_{1}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) k_{2}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) & =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j}\left(\sum_{\ell} \psi_{\ell}\left(\mathbf{x}_{i}\right) \psi_{\ell}\left(\mathbf{x}_{j}\right) k_{2}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right) \\
& =\sum_{\ell} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(\alpha_{i} \psi_{\ell}\left(\mathbf{x}_{i}\right)\right)\left(\alpha_{j} \psi_{\ell}\left(\mathbf{x}_{j}\right)\right) k_{2}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
\end{aligned}
$$

Kernel engineering: building PDK

- for any polynomial with positive coef. ϕ from \mathbb{R} to \mathbb{R}

$$
\phi(k(\mathrm{~s}, \mathrm{t}))
$$

- if Ψ is a function from \mathbb{R}^{d} to \mathbb{R}^{d}

$$
k(\Psi(\mathrm{~s}), \Psi(\mathrm{t}))
$$

- if φ from \mathbb{R}^{d} to \mathbb{R}^{+}, is minimum in 0

$$
k(\mathbf{s}, \mathrm{t})=\varphi(\mathrm{s}+\mathrm{t})-\varphi(\mathrm{s}-\mathrm{t})
$$

- convolution of two positive kernels is a positive kernel

$$
K_{1} \star K_{2}
$$

Example : the Gaussian kernel is a PDK

$$
\begin{aligned}
\exp \left(-\|\mathbf{s}-\mathrm{t}\|^{2}\right) & =\exp \left(-\|\mathbf{s}\|^{2}-\|t\|^{2}+2 \mathbf{s}^{\top} \mathrm{t}\right) \\
& =\exp \left(-\|\mathbf{s}\|^{2}\right) \exp \left(-\|t\|^{2}\right) \exp \left(2 \mathbf{s}^{\top} t\right)
\end{aligned}
$$

- $\mathbf{s}^{\top} t$ is a PDK and function exp as the limit of positive series expansion, so $\exp \left(2 \mathbf{s}^{\top} \mathrm{t}\right)$ is a PDK
- $\exp \left(-\|\mathbf{s}\|^{2}\right) \exp \left(-\|t\|^{2}\right)$ is a PDK as a product kernel
- the product of two PDK is a PDK

some examples of PD kernels...

type	name	$k(s, t)$				
radial	gaussian	$\exp \left(-\frac{r^{2}}{b}\right), r=\\|s-t\\|$				
radial	laplacian	$\exp (-r / b)$				
radial	rationnal	$1-\frac{r^{2}}{r^{2}+b}$				
radial	loc. gauss.	$\max \left(0,1-\frac{r}{3 b}\right)^{d} \exp \left(-\frac{r^{2}}{b}\right)$				
non stat.	χ^{2}	$\exp (-r / b), r=\sum_{k} \frac{\left(s_{k}-t_{k}\right)^{2}}{s_{k}+t_{k}}$				
projective	polynomial	$\left(s^{\top} t\right)^{p}$				
projective	affine	$\left(s^{\top} t+b\right)^{p}$				
projective	cosine	$s^{\top} t /\\|s\\|\\|t\\|$				
projective	correlation	$\exp \left(\frac{s^{\top} t}{\\|s\\|\\|t\\|}-b\right)$				

Roadmap

(1) Supervised classification and prediction
(2) Linear SVM

- Separating hyperplanes
- Linear SVM: the problem
- Optimization in 5 slides
- Dual formulation of the linear SVM
- The non separable case
(3) Kernels
(4) Kernelized support vector machine

using relevant features...

$$
\text { a data point becomes a function } \mathbf{x} \longrightarrow k(\mathbf{x}, \bullet)
$$

input space representation: x

feature space: $k(x,$.

Representer theorem for SVM

$$
\left\{\begin{aligned}
\min _{f, b} & \frac{1}{2}\|f\|_{\mathcal{H}}^{2} \\
\text { with } & y_{i}\left(f\left(\mathbf{x}_{i}\right)+b\right) \geq 1
\end{aligned}\right.
$$

Lagrangian

$$
L(f, b, \alpha)=\frac{1}{2}\|f\|_{\mathcal{H}}^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(f\left(\mathbf{x}_{i}\right)+b\right)-1\right) \quad \alpha \geq 0
$$

optimility condition: $\nabla_{f} L(f, b, \alpha)=0 \Leftrightarrow f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)$
Eliminate f from $L:\left\{\begin{array}{l}\|f\|_{\mathcal{H}}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\ \sum_{i=1}^{n} \alpha_{i} y_{i} f\left(\mathbf{x}_{i}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\end{array}\right.$

$$
Q(b, \alpha)=-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)-\sum_{i=1}^{n} \alpha_{i}\left(y_{i} b-1\right)
$$

Dual formulation for SVM

the intermediate function

$$
Q(b, \alpha)=-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)-b\left(\sum_{i=1}^{n} \alpha_{i} y_{i}\right)+\sum_{i=1}^{n} \alpha_{i}
$$

$$
\max _{\alpha} \min _{b} Q(b, \alpha)
$$

b can be seen as the Lagrange multiplier of the following (balanced) constaint $\sum_{i=1}^{n} \alpha_{i} y_{i}=0$ which is also the optimality KKT condition on b

Dual formulation

$$
\left\{\begin{aligned}
\max _{\alpha \in \mathbf{R}^{n}} & -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)+\sum_{i=1}^{n} \alpha_{i} \\
\text { such that } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \\
\text { and } \quad & 0 \leq \alpha_{i}, \quad i=1, n
\end{aligned}\right.
$$

SVM dual formulation

Dual formulation

$$
\begin{cases}\max _{\alpha \in \mathbf{R}^{n}}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)+\sum_{i=1}^{n} \alpha_{i} \\ \text { with } & \sum_{i=1}^{n} \alpha_{i} y_{i}=0 \quad \text { and } 0 \leq \alpha_{i}, \quad i=1, n\end{cases}
$$

The dual formulation gives a quadratic program (QP)

$$
\begin{cases}\min _{\substack{\alpha \in \mathbb{R}^{n} \\ \\ \text { with }}} \frac{1}{2} \alpha^{\top} G \alpha-\mathbb{I}^{\top} \alpha \\ \alpha^{\top} \mathbf{y}=0 \text { and } 0 \leq \alpha\end{cases}
$$

with $G_{i j}=y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
with the linear kernel $f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i}\left(\mathbf{x}^{\top} \mathbf{x}_{i}\right)=\sum_{j=1}^{d} \beta_{j} x_{j}$ when d is small wrt. n primal may be interesting.
the general case: C-SVM

Primal formulation

$$
(\mathcal{P}) \begin{cases}\min _{f \in \mathcal{H}, b, \xi \in \mathbb{R}^{n}} & \frac{1}{2}\|f\|^{2}+\frac{c}{p} \sum_{i=1}^{n} \xi_{i}^{p} \\ \text { such that } & y_{i}\left(f\left(\mathbf{x}_{i}\right)+b\right) \geq 1-\xi_{i}, \quad \xi_{i} \geq 0, \quad i=1, n\end{cases}
$$

C is the regularization path parameter (to be tuned)
$p=1, L_{1} \mathrm{SVM}$

$$
\left\{\begin{array}{cl}
\max _{\alpha \in \mathbb{R}^{n}} & -\frac{1}{2} \alpha^{\top} G \alpha+\alpha^{\top} \mathbb{I} \\
\text { such that } & \alpha^{\top} \mathbf{y}=0 \text { and } 0 \leq \alpha_{i} \leq C \quad i=1, n
\end{array}\right.
$$

$p=2, L_{2} S V M$

$$
\left\{\begin{aligned}
\max _{\alpha \in \mathbb{R}^{n}} & -\frac{1}{2} \alpha^{\top}\left(G+\frac{1}{C} I\right) \alpha+\alpha^{\top} \mathbb{I} \\
\text { such that } & \alpha^{\top} \mathbf{y}=0 \text { and } 0 \leq \alpha_{i} \quad i=1, n
\end{aligned}\right.
$$

the regularization path: is the set of solutions $\alpha(C)$ when C varies

Data groups: illustration

$f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}, \mathbf{x}_{i}\right)$
$D(x)=\operatorname{sign}(f(x)+b)$

useless data well classified

$$
\alpha=0
$$

suspicious data

$$
\alpha=C
$$

The importance of being support

$$
f(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

data point	α	constraint value	set
\mathbf{x}_{i} useless	$\alpha_{i}=0$	$y_{i}\left(f\left(\mathbf{x}_{i}\right)+b\right)>1$	I_{0}
\mathbf{x}_{i} support	$0<\alpha_{i}<C$	$y_{i}\left(f\left(\mathbf{x}_{i}\right)+b\right)=1$	I_{α}
\mathbf{x}_{i} suspicious	$\alpha_{i}=C$	$y_{i}\left(f\left(\mathbf{x}_{i}\right)+b\right)<1$	I_{C}

Table: When a data point is «support» it lies exactly on the margin.
here lies the efficiency of the algorithm (and its complexity)! sparsity: $\alpha_{i}=0$

checker board

- 2 classes
- 500 examples
- separable

a separable case

$n=500$ data points

$$
n=5000 \text { data points }
$$

Tuning C and γ (the kernel width) : grid search

Empirical complexity

G. Loosli et al JMLR, 2007

Conclusion

- Learning as an optimization problem
- use CVX to prototype
- MonQP
- specific parallel and distributed solvers
- Universal through Kernelization (dual trick)
- Scalability
- Sparsity provides scalability
- Kernel implies "locality"
- Big data limitations: back to primal (an linear)

